64 research outputs found
Modeling-independent elucidation of inactivation pathways in recombinant and native A-type Kv channels.
A-type voltage-gated K(+) (Kv) channels self-regulate their activity by inactivating directly from the open state (open-state inactivation [OSI]) or by inactivating before they open (closed-state inactivation [CSI]). To determine the inactivation pathways, it is often necessary to apply several pulse protocols, pore blockers, single-channel recording, and kinetic modeling. However, intrinsic hurdles may preclude the standardized application of these methods. Here, we implemented a simple method inspired by earlier studies of Na(+) channels to analyze macroscopic inactivation and conclusively deduce the pathways of inactivation of recombinant and native A-type Kv channels. We investigated two distinct A-type Kv channels expressed heterologously (Kv3.4 and Kv4.2 with accessory subunits) and their native counterparts in dorsal root ganglion and cerebellar granule neurons. This approach applies two conventional pulse protocols to examine inactivation induced by (a) a simple step (single-pulse inactivation) and (b) a conditioning step (double-pulse inactivation). Consistent with OSI, the rate of Kv3.4 inactivation (i.e., the negative first derivative of double-pulse inactivation) precisely superimposes on the profile of the Kv3.4 current evoked by a single pulse because the channels must open to inactivate. In contrast, the rate of Kv4.2 inactivation is asynchronous, already changing at earlier times relative to the profile of the Kv4.2 current evoked by a single pulse. Thus, Kv4.2 inactivation occurs uncoupled from channel opening, indicating CSI. Furthermore, the inactivation time constant versus voltage relation of Kv3.4 decreases monotonically with depolarization and levels off, whereas that of Kv4.2 exhibits a J-shape profile. We also manipulated the inactivation phenotype by changing the subunit composition and show how CSI and CSI combined with OSI might affect spiking properties in a full computational model of the hippocampal CA1 neuron. This work unambiguously elucidates contrasting inactivation pathways in neuronal A-type Kv channels and demonstrates how distinct pathways might impact neurophysiological activity
Engineering and Characterization of an Enhanced Fluorescent Protein Voltage Sensor
BACKGROUND: Fluorescent proteins have been used to generate a variety of biosensors to optically monitor biological phenomena in living cells. Among this class of genetically encoded biosensors, reporters for membrane potential have been a particular challenge. The use of presently known voltage sensor proteins is limited by incorrect subcellular localization and small or absent voltage responses in mammalian cells. RESULTS: Here we report on a fluorescent protein voltage sensor with superior targeting to the mammalian plasma membrane and high responsiveness to membrane potential signaling in excitable cells. CONCLUSIONS AND SIGNIFICANCE: This biosensor, which we termed VSFP2.1, is likely to lead to new methods of monitoring electrically active cells with cell type specificity, non-invasively and in large numbers, simultaneously
Obligatory heterotetramerization of three prviously uncharacterized <tex>K^{+}$</tex> channel A-subunits identified in the human genome
Gating of Shaker-type channels requires the flexibility of S6 caused by prolines
The recent crystallization of a voltage-gated K+ channel has given insight into the structure of these channels but has not resolved the issues of the location and the operation of the gate. The conserved PXP motif in the S6 segment of Shaker channels has been proposed to contribute to the intracellular gating structure. To investigate the role of this motif in the destabilization of the alpha-helix, both prolines were replaced to promote an alpha-helix (alanine) or to allow a flexible configuration (glycine). These substitutions were nonfunctional or resulted in drastically altered channel gating, highlighting an important role of these prolines. Combining these mutations with a proline substitution scan demonstrated that proline residues in the midsection of S6 are required for functionality, but not necessarily at the positions conserved throughout evolution. These results indicate that the destabilization or bending of the S6 alpha-helix caused by the PXP motif apparently creates a flexible "hinge" that allows movement of the lower S6 segment during channel gating and opening
Gating of Shaker-type channels requires flexibility of S6 caused by prolines
The recent crystallization of a voltage-gated K+ channel has given insight into the structure of these channels but has not resolved the issues of the location and the operation of the gate. The conserved PXP motif in the S6 segment of Shaker channels has been proposed to contribute to the intracellular gating structure. To investigate the role of this motif in the destabilization of the alpha-helix, both prolines were replaced to promote an alpha-helix (alanine) or to allow a flexible configuration (glycine). These substitutions were nonfunctional or resulted in drastically altered channel gating, highlighting an important role of these prolines. Combining these mutations with a proline substitution scan demonstrated that proline residues in the midsection of S6 are required for functionality, but not necessarily at the positions conserved throughout evolution. These results indicate that the destabilization or bending of the S6 alpha-helix caused by the PXP motif apparently creates a flexible "hinge" that allows movement of the lower S6 segment during channel gating and opening
The rate-dependent biophysical properties of the LQT1 H258R mutant are counteracted by a dominant negative effect on channel trafficking
The rate-dependent biophysical properties of the LQT1 H258R mutant are counteracted by a dominant negative effect on channel trafficking
- …
