216 research outputs found
Changes in soil dissolved organic carbon affect reconstructed history and projected future trends in surface water acidification
Preindustrial (1850s) and future (2060) streamwater chemistry of an anthropogenically acidified small catchment was estimated using the MAGIC model for three different scenarios for dissolved organic carbon (DOC) concentrations and sources. The highest modeled pH = 5.7 for 1850s as well as for 2060 (pH = 4.4) was simulated given the assumption that streamwater DOC concentration was constant at the 1993 level. A scenario accounting for an increase of DOC as an inverse function of ionic strength (IS) of soilwater and streamwater resulted in much lower preindustrial (pH = 4.9) and future recovery to (pH = 4.1) if the stream riparian zone was assumed to be the only DOC source. If upland soilwater (where significant DOC increase was observed at −5 and −15 cm) was also included, DOC was partly neutralized within the soil and higher preindustrial pH = 5.3 and future pH = 4.2 were estimated. The observed DOC stream flux was 2–4 times higher than the potential carbon production of the riparian zone, implying that this is unlikely to be the sole DOC source. Modeling based on the assumption that stream DOC changes are solely attributable to changes in the riparian zone appears likely to underestimate preindustrial pH
Tree species influence on soil acidification: long-term trends and modeling
Forest ecosystems belong to the part of environment most affected by the anthropogenic acidification. The structure of Central European forests was historically converted mostly into the Norway spruce monocultures. Such a forests received elevated acidic deposition since 1950s, from which large parts of mountain forests were killed by air pollution in 1970s and 1980s. After reduction of acidic deposition the forest soils were significantly delayed in chemical recovery compared to stream chemistry (Alewell et al., 2000). In this thesis we focused on long-term changes in soil chemistry at highly polluted area of Ore Mts., with particular interest in the tree species influence on soil acidification. The presented results including measurements of biogeochemical cycles within forest ecosystem at the Norway spruce (Picea abies [L.]) stand in the period 1992-2005 and at the European beech (Fagus sylvatica [L.]) stand between 2003-2005. The desorption of previously stored sulfur and the decrease of Ca deposition are the main factors controlling the recovery of soil solution at spruce stand. The reduction in Ca availability resulted in lower uptake by tree assimilatory tissues, measured as concentration in needles. The unexpected disappearing of nitrogen leaching from soil was undoubtedly the most...Forest ecosystems belong to the part of environment most affected by the anthropogenic acidification. The structure of Central European forests was historically converted mostly into the Norway spruce monocultures. Such a forests received elevated acidic deposition since 1950s, from which large parts of mountain forests were killed by air pollution in 1970s and 1980s. After reduction of acidic deposition the forest soils were significantly delayed in chemical recovery compared to stream chemistry (Alewell et al., 2000). In this thesis we focused on long-term changes in soil chemistry at highly polluted area of Ore Mts., with particular interest in the tree species influence on soil acidification. The presented results including measurements of biogeochemical cycles within forest ecosystem at the Norway spruce (Picea abies [L.]) stand in the period 1992-2005 and at the European beech (Fagus sylvatica [L.]) stand between 2003-2005. The desorption of previously stored sulfur and the decrease of Ca deposition are the main factors controlling the recovery of soil solution at spruce stand. The reduction in Ca availability resulted in lower uptake by tree assimilatory tissues, measured as concentration in needles. The unexpected disappearing of nitrogen leaching from soil was undoubtedly the most...Institute of Geochemistry, Mineralogy and Mineral ResourcesÚstav geochemie, mineralogie a nerostných zdrojůFaculty of SciencePřírodovědecká fakult
Recommended from our members
Modelling impacts of atmospheric deposition and temperature on long-term DOC trends
It is increasingly recognised that widespread and substantial increases in Dissolved organic carbon (DOC) concentrations in remote surface, and soil, waters in recent decades are linked to declining acid deposition. Effects of rising pH and declining ionic strength on DOC solubility have been proposed as potential dominant mechanisms. However, since DOC in these systems is derived mainly from recently-fixed carbon, and since organic matter decomposition rates are considered sensitive to temperature, uncertainty persists over the extent to which other drivers that could influence DOC production. Such potential drivers include fertilization by nitrogen (N) and global warming. We therefore ran the dynamic soil chemistry model MADOC for a range of UK soils, for which time series data are available, to consider the likely relative importance of decreased deposition of sulphate and chloride, accumulation of reactive N, and higher temperatures, on soil DOC production in different soils. Modelled patterns of DOC change generally agreed favourably with measurements collated over 10-20 years, but differed markedly between sites. While the acidifying effect of sulphur deposition appeared to be the predominant control on the observed soil water DOC trends in all the soils considered other than a blanket peat, the model suggested that over the long term, the effects of nitrogen deposition on N-limited soils may have been sufficient to raise the “acid recovery DOC baseline” significantly. In contrast, reductions in non-marine chloride deposition and effects of long term warming appeared to have been relatively unimportant. The suggestion that future DOC concentrations might exceed preindustrial levels as a consequence of nitrogen pollution has important implications for drinking water catchment management and the setting and pursuit of appropriate restoration targets, but findings still require validation from reliable centennial-scale proxy records, such as those being developed using palaeolimnological techniques
Long-Term Changes in Aluminum Fractions of Drainage Waters in Two Forest Catchments with Contrasting Lithology
Aluminum (Al) chemistry was studied in soils and waters of two catchments covered by spruce (Picea abies) monocultures in the Czech Republic that represent geochemical end-members of terrestrial and aquatic sensitivity to acidic deposition. The acid-sensitive Lysina catchment, underlain by granite, was compared to the acid-resistant Pluhův Bor catchment on serpentine. Organically-bound Al was the largest pool of reactive soil Al at both sites. Very high median total Al (Alt) concentrations (40 μmol L−1) and inorganic monomeric Al (Ali) concentrations (27 μmol L−1) were observed in acidic (pH 4.0) stream water at Lysina in the 1990s and these concentrations decreased to 32 μmol L−1 (Alt) and 13 μmol L−1 (Ali) in the 2000s. The potentially toxic Ali fraction decreased in response to long-term decreases in acidic deposition, but Ali remained the largest fraction. However, the organic monomeric (Alo) and particulate (Alp) fractions increased in the 2000s at Lysina. In contrast to Lysina, marked increases of Alt concentrations in circum-neutral waters at Pluhův Bor were observed in the 2000s in comparison with the 1990s. These increases were entirely due to the Alp fraction, which increased more than 3-fold in stream water and up to 8-fold in soil water in the A horizon. Increase of Alp coincided with dissolved organic carbon (DOC) increases. Acidification recovery may have increased the content of colloidal Al though the coagulation of monomeric Al
Plant functional type affects nitrogen use efficiency in high-Arctic tundra
To unravel the potential effects of climate warming on soil N availability in a high Arctic tundra ecosystem we studied temperature effects on soil mineralization, and N uptake from different soil depths (−3, −10 and −30 cm) by tundra plants. Uptake was assessed using 15N tracer injected directly into mineral soil as 15NH4Cl solution to specifically mimic altered N availability from enhanced mineralization. Net N mineralization rates were very low, suggesting that N is strongly limiting in this system. There was no apparent temperature effect (−2 °C, 5 °C, 10 °C) on mineralization, but net nitrification was strongly limited by temperature – under the −2 °C treatment no nitrification occurred. As a consequence of ongoing mineralization and limited nitrification under freezing conditions, mineral NH4 may accumulate during the winter season and be available for plant uptake without risk of loss via View the MathML sourceNO3− leaching immediately after snowmelt. Nitrogen uptake niches were clearly stratified by depth. Graminoids (Carex misandra and Luzula arctica) were most effective at taking up N from deep soil horizons, and recovery in graminoid biomass after one year was independent of 15N injection depth. Recovery of N by the dwarf shrub Salix polaris was significantly higher following shallow application (−3 cm) compared to deeper treatments (−10 and −30 cm). Lichens and mosses also showed a decline in N uptake with application depth, and very little N was recovered by lichens and mosses even from −3 cm, in contrast to the strong uptake that has been observed in mosses when N is applied to the vegetation surface. The ability of graminoids to access nutrients from deeper mineral soil may give them an advantage over mosses and dwarf shrubs in warmer high Arctic tundra in acquiring limited available nutrient resources
Effects of bark beetle disturbance on soil nutrient retention and lake chemistry in glacial catchment
Forest ecosystems worldwide are subjected to human-induced stressors, including eutrophication and acidification, and to natural disturbances
(for example, insect infestation, windstorms, fires). The occurrence of the later is expected to increase due to the ongoing climate change. These
multi-stressor forcings modify ecosystem biogeochemistry, including the retention of limiting nutrients, with implications for terrestrial and aquatic
biodiversity. Here we present whole ecosystem nutrient (N, Ca, Mg, K) mass balances in the forested catchment of Plešné Lake, CZ, which has
undergone transient changes linked to the recovery from anthropogenic acidification and to the forest disturbances caused by severe infestations
by the bark beetle (Ips typographus). Measured fluxes and storage of nutrients in the lake-catchment ecosystem were used to constrain the processoriented biogeochemical model MAGIC (Model of Acidification of Groundwater In Catchments). Simulated lake water chemistry and changes in soil
nutrient pools fitted observed data and revealed that (1) the ecosystem N retention declined, thus nitrate leaching increased for 10 years following the
bark beetle disturbance, with transient adverse effects on the acid–base status of lake water, (2) the kinetics of nutrient mineralisation from decaying
biomass coupled with nutrient immobilisation in regrowing vegetation constrained the magnitude and duration of ecosystem losses of N, Ca and Mg,
(3) the excess of mineralised base cations from decomposing biomass replenished the soil cation exchange matrix, which led to increased soil base
saturation, and (4) the improvement of the catchment soil acid–base status led to an increase of lake water pH and acid neutralising capacity. Forested
ecosystems underlain by nutrient-poor soils and bedrock are prone to human-induced damages caused by acidification and eutrophication, and any
natural disturbance may further lead to nutrient imbalances. We demonstrated that in this natural forest ecosystem protected from human intervention,
disturbances together with natural post-disturbance vegetation recovery have temporally positive effects on the nutrient stores in the soil
Impact of pollution on the temperature sensitivity of multiple Norway spruce tree-ring parameters in Central Europe
Funding: This research was undertaken as part of the REPLICATE project (20-22351Y) funded by the Czech Science Foundation (GAČR), as well as by the Czech University of Life Sciences Prague institutional project (IGA Grant funding 2022/2023, project No A_21_22). JT was supported by Charles University [PRIMUS/24/SCI/004] and Programme JAC [CZ.02.01.01/00/22_008/0004605]. JB received funding from the SNF Sinergia project CALDERA (no.183571). JB and GvA received funding from the SNF project XELLCLIM (no. 200021_182398).Central European forests experienced high rates of air pollution in the second half of the 20th century, especially along the borders of Czechia, Germany and Poland. Consequently, tree-growth declines were detected in heavily polluted forests. However, information about how pollution has influenced growth-climate responses beyond tree-ring width (RW) in pollution-affected forests remains sparse. In this study, we investigated the impact of high-level pollution during 1960s-1980s in Central Europe on the climatic signals of various tree-ring parameters of Norway spruce, including RW, latewood Blue Intensity (LWBI), and maximum cell wall thickness (CWT), to understand how tree growth and climatic sensitivity were affected. Tree-ring cores were collected from six temperature-limited high-elevation sites within four pollution-affected regions in Czechia and northern Slovakia. RW and LWBI were measured for all samples and CWT was produced from two sites with contrasting pollution impacts. Distinct pollution-related RW growth suppression was detected in 1970s to 1980s at several sites. LWBI and CWT chronologies were highly correlated (rLWBI = 0.52–0.75; rCWT = 0.63–0.68) with growing season (April-September) temperature and did not exhibit clear signs of distortion by pollution compared to RW (rRW = 0.28–0.58). Pollution stress seemed to reduce tree growth by decreasing cell numbers and made RW less sensitive to climate. This study reveals that impacts of pollution on different tree-ring parameters varied which can further influence their climatic sensitivities. It provides valuable insight in improving the utility of pollution-affected tree-ring chronologies by choosing appropriate parameters, which can ultimately contribute to substantially improving the calibration of climate reconstructions from heavily polluted regions.Peer reviewe
Recommended from our members
Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the 21st century
During the past several decades, the Earth system has changed significantly, especially across Northern Eurasia. Changes in the socio-economic conditions of the larger countries in the region have also resulted in a variety of regional environmental changes that can
have global consequences. The Northern Eurasia Future Initiative (NEFI) has been designed as an essential continuation of the Northern Eurasia Earth Science
Partnership Initiative (NEESPI), which was launched in 2004. NEESPI sought to elucidate all aspects of ongoing environmental change, to inform societies and, thus, to
better prepare societies for future developments. A key principle of NEFI is that these developments must now be secured through science-based strategies co-designed
with regional decision makers to lead their societies to prosperity in the face of environmental and institutional challenges. NEESPI scientific research, data, and
models have created a solid knowledge base to support the NEFI program. This paper presents the NEFI research vision consensus based on that knowledge. It provides the reader with samples of recent accomplishments in regional studies and formulates new NEFI science questions. To address these questions, nine research foci are identified and their selections are briefly justified. These foci include: warming of the Arctic; changing frequency, pattern, and intensity of extreme and inclement environmental conditions; retreat of the cryosphere; changes in terrestrial water cycles; changes in the biosphere; pressures on land-use; changes in infrastructure; societal actions in response to environmental change; and quantification of Northern Eurasia's role in the global Earth system. Powerful feedbacks between the Earth and human systems in Northern Eurasia (e.g., mega-fires, droughts, depletion of the cryosphere essential for water supply, retreat of sea ice) result from past and current human activities (e.g., large scale water withdrawals, land use and governance change) and
potentially restrict or provide new opportunities for future human activities. Therefore, we propose that Integrated Assessment Models are needed as the final stage of global
change assessment. The overarching goal of this NEFI modeling effort will enable evaluation of economic decisions in response to changing environmental conditions and justification of mitigation and adaptation efforts
Dissolved and gaseous nitrogen losses in forests controlled by soil nutrient stoichiometry
Global chronic nitrogen (N) deposition to forests can alleviate ecosystem N limitation, with potentially wide ranging consequences for biodiversity, carbon sequestration, soil and surface water quality, and greenhouse gas emissions. However, the ability to predict these consequences requires improved quantification of hard-to-measure N fluxes, particularly N gas loss and soil N retention. Here we combine a unique set of long-term catchment N budgets in the central Europe with ecosystem 15N data to reveal fundamental controls over dissolved and gaseous N fluxes in temperate forests. Stream leaching losses of dissolved N corresponded with nutrient stoichiometry of the forest floor, with stream N losses increasing as ecosystems progress towards phosphorus limitation, while soil N storage increased with oxalate extractable iron and aluminium content. Our estimates of soil gaseous losses based on 15N stocks averaged 2.5 ± 2.2 kg N ha−1 yr−1 and comprised 20% ± 14% of total N deposition. Gaseous N losses increased with forest floor N:P ratio and with dissolved N losses. Our relationship between gaseous and dissolved N losses was also able to explain previous 15N-based N loss rates measured in tropical and subtropical catchments, suggesting a generalisable response driven by nitrate (NO3−) abundance and in which the relative importance of dissolved N over gaseous N losses tended to increase with increasing NO3− export. Applying this relationship globally, we extrapolated current gaseous N loss flux from forests to be 8.9 Tg N yr−1, which represent 39% of current N deposition to forests worldwide
Predicting sulphur and nitrogen deposition using a simple statistical method
Data from 32 long-term (1994–2012) monitoring sites were used to assess temporal development and spatial variability of sulphur (S) and inorganic nitrogen (N) concentrations in bulk precipitation, and S in throughfall, for the Czech Republic. Despite large variance in absolute S and N concentration/deposition among sites, temporal coherence using standardised data (Z score) was demonstrated. Overall significant declines of SO4 concentration in bulk and throughfall precipitation, as well as NO3 and NH4 concentration in bulk precipitation, were observed. Median Z score values of bulk SO4, NO3 and NH4 and throughfall SO4 derived from observations and the respective emission rates of SO2, NOx and NH3 in the Czech Republic and Slovakia showed highly significant (p < 0.001) relationships. Using linear regression models, Z score values were calculated for the whole period 1900–2012 and then back-transformed to give estimates of concentration for the individual sites. Uncertainty associated with the concentration calculations was estimated as 20% for SO4 bulk precipitation, 22% for throughfall SO4, 18% for bulk NO3 and 28% for bulk NH4. The application of the method suggested that it is effective in the long-term reconstruction and prediction of S and N deposition at a variety of sites. Multiple regression modelling was used to extrapolate site characteristics (mean precipitation chemistry and its standard deviation) from monitored to unmonitored sites. Spatially distributed temporal development of S and N depositions were calculated since 1900. The method allows spatio-temporal estimation of the acid deposition in regions with extensive monitoring of precipitation chemistry
- …
