2,470 research outputs found
Diffeomorphic demons using normalized mutual information, evaluation on multimodal brain MR images
The demons algorithm is a fast non-parametric non-rigid registration method. In recent years great efforts have been made to improve the approach; the state of the art version yields symmetric inverse-consistent largedeformation diffeomorphisms. However, only limited work has explored inter-modal similarity metrics, with no practical evaluation on multi-modality data. We present a diffeomorphic demons implementation using the analytical gradient of Normalised Mutual Information (NMI) in a conjugate gradient optimiser. We report the first qualitative and quantitative assessment of the demons for inter-modal registration. Experiments to spatially normalise real MR images, and to recover simulated deformation fields, demonstrate (i) similar accuracy from NMI-demons and classical demons when the latter may be used, and (ii) similar accuracy for NMI-demons on T1w-T1w and T1w-T2w registration, demonstrating its potential in multi-modal scenarios
Diffeomorphic Demons using Normalised Mutual Information, Evaluation on Multi-Modal Brain MR Images
The demons algorithm is a fast non-parametric non-rigid registration method. In recent years great efforts have been made to improve the approach; the state of the art version yields symmetric inverse-consistent large-deformation diffeomorphisms. However, only limited work has explored inter-modal similarity metrics, with no practical evaluation on multi-modality data. We present a diffeomorphic demons implementation using the analytical gradient of Normalised Mutual Information (NMI) in a conjugate gradient optimiser. We report the first qualitative and quantitative assessment of the demons for inter-modal registration. Experiments to spatially normalise real MR images, and to recover simulated deformation fields, demonstrate (i) similar accuracy from NMI-demons and classical demons when the latter may be used, and (ii) similar accuracy for NMI-demons on T1w-T1w and T1w-T2w registration, demonstrating its potential in multi-modal scenarios
The value of hippocampal and temporal horn volumes and rates of change in predicting future conversion to AD.
Hippocampal pathology occurs early in Alzheimer disease (AD), and atrophy, measured by volumes and volume changes, may predict which subjects will develop AD. Measures of the temporal horn (TH), which is situated adjacent to the hippocampus, may also indicate early changes in AD. Previous studies suggest that these metrics can predict conversion from amnestic mild cognitive impairment (MCI) to AD with conversion and volume change measured concurrently. However, the ability of these metrics to predict future conversion has not been investigated. We compared the abilities of hippocampal, TH, and global measures to predict future conversion from MCI to AD. TH, hippocampi, whole brain, and ventricles were measured using baseline and 12-month scans. Boundary shift integral was used to measure the rate of change. We investigated the prediction of conversion between 12 and 24 months in subjects classified as MCI from baseline to 12 months. All measures were predictive of future conversion. Local and global rates of change were similarly predictive of conversion. There was evidence that the TH expansion rate is more predictive than the hippocampal atrophy rate (P=0.023) and that the TH expansion rate is more predictive than the TH volume (P=0.036). Prodromal atrophy rates may be useful predictors of future conversion to sporadic AD from amnestic MCI
Training recurrent neural networks robust to incomplete data: application to Alzheimer's disease progression modeling
Disease progression modeling (DPM) using longitudinal data is a challenging
machine learning task. Existing DPM algorithms neglect temporal dependencies
among measurements, make parametric assumptions about biomarker trajectories,
do not model multiple biomarkers jointly, and need an alignment of subjects'
trajectories. In this paper, recurrent neural networks (RNNs) are utilized to
address these issues. However, in many cases, longitudinal cohorts contain
incomplete data, which hinders the application of standard RNNs and requires a
pre-processing step such as imputation of the missing values. Instead, we
propose a generalized training rule for the most widely used RNN architecture,
long short-term memory (LSTM) networks, that can handle both missing predictor
and target values. The proposed LSTM algorithm is applied to model the
progression of Alzheimer's disease (AD) using six volumetric magnetic resonance
imaging (MRI) biomarkers, i.e., volumes of ventricles, hippocampus, whole
brain, fusiform, middle temporal gyrus, and entorhinal cortex, and it is
compared to standard LSTM networks with data imputation and a parametric,
regression-based DPM method. The results show that the proposed algorithm
achieves a significantly lower mean absolute error (MAE) than the alternatives
with p < 0.05 using Wilcoxon signed rank test in predicting values of almost
all of the MRI biomarkers. Moreover, a linear discriminant analysis (LDA)
classifier applied to the predicted biomarker values produces a significantly
larger AUC of 0.90 vs. at most 0.84 with p < 0.001 using McNemar's test for
clinical diagnosis of AD. Inspection of MAE curves as a function of the amount
of missing data reveals that the proposed LSTM algorithm achieves the best
performance up until more than 74% missing values. Finally, it is illustrated
how the method can successfully be applied to data with varying time intervals.Comment: arXiv admin note: substantial text overlap with arXiv:1808.0550
Simultaneous synthesis of FLAIR and segmentation of white matter hypointensities from T1 MRIs
Segmenting vascular pathologies such as white matter lesions in Brain
magnetic resonance images (MRIs) require acquisition of multiple sequences such
as T1-weighted (T1-w) --on which lesions appear hypointense-- and fluid
attenuated inversion recovery (FLAIR) sequence --where lesions appear
hyperintense--. However, most of the existing retrospective datasets do not
consist of FLAIR sequences. Existing missing modality imputation methods
separate the process of imputation, and the process of segmentation. In this
paper, we propose a method to link both modality imputation and segmentation
using convolutional neural networks. We show that by jointly optimizing the
imputation network and the segmentation network, the method not only produces
more realistic synthetic FLAIR images from T1-w images, but also improves the
segmentation of WMH from T1-w images only.Comment: Conference on Medical Imaging with Deep Learning MIDL 201
Robust training of recurrent neural networks to handle missing data for disease progression modeling
Disease progression modeling (DPM) using longitudinal data is a challenging
task in machine learning for healthcare that can provide clinicians with better
tools for diagnosis and monitoring of disease. Existing DPM algorithms neglect
temporal dependencies among measurements and make parametric assumptions about
biomarker trajectories. In addition, they do not model multiple biomarkers
jointly and need to align subjects' trajectories. In this paper, recurrent
neural networks (RNNs) are utilized to address these issues. However, in many
cases, longitudinal cohorts contain incomplete data, which hinders the
application of standard RNNs and requires a pre-processing step such as
imputation of the missing values. We, therefore, propose a generalized training
rule for the most widely used RNN architecture, long short-term memory (LSTM)
networks, that can handle missing values in both target and predictor
variables. This algorithm is applied for modeling the progression of
Alzheimer's disease (AD) using magnetic resonance imaging (MRI) biomarkers. The
results show that the proposed LSTM algorithm achieves a lower mean absolute
error for prediction of measurements across all considered MRI biomarkers
compared to using standard LSTM networks with data imputation or using a
regression-based DPM method. Moreover, applying linear discriminant analysis to
the biomarkers' values predicted by the proposed algorithm results in a larger
area under the receiver operating characteristic curve (AUC) for clinical
diagnosis of AD compared to the same alternatives, and the AUC is comparable to
state-of-the-art AUCs from a recent cross-sectional medical image
classification challenge. This paper shows that built-in handling of missing
values in LSTM network training paves the way for application of RNNs in
disease progression modeling.Comment: 9 pages, 1 figure, MIDL conferenc
Combined Reconstruction and Registration of Digital Breast Tomosynthesis
Digital breast tomosynthesis (DBT) has the potential to en-
hance breast cancer detection by reducing the confounding e ect of su-
perimposed tissue associated with conventional mammography. In addi-
tion the increased volumetric information should enable temporal datasets
to be more accurately compared, a task that radiologists routinely apply
to conventional mammograms to detect the changes associated with ma-
lignancy. In this paper we address the problem of comparing DBT data
by combining reconstruction of a pair of temporal volumes with their reg-
istration. Using a simple test object, and DBT simulations from in vivo
breast compressions imaged using MRI, we demonstrate that this com-
bined reconstruction and registration approach produces improvements
in both the reconstructed volumes and the estimated transformation pa-
rameters when compared to performing the tasks sequentially
- …
