385 research outputs found
Very Noble Suppers: Agriculture and Foodways in Late Colonial Falmouth
During the American colonial period, Falmouth Neck (now Portland), Maine began its progression from a small fishing village to a vibrant hub of the region’s agriculture and trade. In this article, the author explains various aspects of this progression, particularly through a description of the ways food in the region made its way from farm (or ocean) to table. The author earned an MA in liberal studies from Wesleyan University in 1991 and a PhD in history from the University of Maine in 2009, writing a dissertation on the history of Falmouth from 1760-1775. He has published numerous works, including a previous article in Maine History; an online monograph entitled Securing the Leg Irons: restriction of legal rights for slaves in Virginia and Maryland, 1625-1791; and an essay in Creating Portland: History and Place in Northern New England, edited by Joseph A. Conforti. He is a frequent public lecturer, an adjunct professor of history at Southern Maine Community College, and a member of the Maine Historical Society, the New England Historical Association, and Phi Alpha Theta, the international historical honors society
The role of Schizosaccharomyces pombe SUMO ligases in genome stability
SUMOylation is a post-translational modification that affects a large number of proteins, many of which are nuclear. While the role of SUMOylation is beginning to be elucidated, it is clear that understanding the mechanisms that regulate the process is likely to be important. Control of the levels of SUMOylation is brought about through a balance of conjugating and deconjugating activities, i.e. of SUMO (small ubiquitin-related modifier) conjugators and ligases versus SUMO proteases. Although conjugation of SUMO to proteins can occur in the absence of a SUMO ligase, it is apparent that SUMO ligases facilitate the SUMOylation of specific subsets of proteins. Two SUMO ligases in Schizosaccharomyces pombe, Pli1 and Nse2, have been identified, both of which have roles in genome stability. We report here on a comparison between the properties of the two proteins and discuss potential roles for the proteins
A Company of Shadows: Slaves and Poor Free Menial Laborers in Cumberland County, Maine, 1760 – 1775
Although slaves and poor, free menial laborers were by no means a majority of the population in late colonial-era Maine, they represented a culturally and socioeconomically significant part of commercial society there, especially at Falmouth in Casco Bay (now Portland) and in coastal Cumberland County. This essay uncovers the lives of the Falmouth’s small slave population and its larger poor menial laborer population from 1760 up to the port city’s destruction by the British in 1775. The author was granted a Ph.D. in history from the University of Maine in 2009. He is a member of the Maine Historical Society, the New England Historical Association, and Phi Alpha Theta
Comments on The Ship’s Log Kept by Captain Ephraim Jones of a Voyage from Falmouth to Bermuda and the Turks Islands,1765
Willis Collection, volume K, rear, Maine Historical Society Collection
SUMO chain formation is required for response to replication arrest in S. pombe
SUMO is a ubiquitin-like protein that is post-translationally attached to one or more lysine residues on target proteins. Despite having only 18% sequence identity with ubiquitin, SUMO contains the conserved betabetaalphabetabetaalphabeta fold present in ubiquitin. However, SUMO differs from ubiquitin in having an extended N-terminus. In S. pombe the N-terminus of SUMO/Pmt3 is significantly longer than those of SUMO in S. cerevisiae, human and Drosophila. Here we investigate the role of this N-terminal region. We have used two dimensional gel electrophoresis to demonstrate that S. pombe SUMO/Pmt3 is phosphorylated, and that this occurs on serine residues at the extreme N-terminus of the protein. Mutation of these residues (in pmt3-1) results in a dramatic reduction in both the levels of high Mr SUMO-containing species and of total SUMO/Pmt3, indicating that phosphorylation of SUMO/Pmt3 is required for its stability. Despite the significant reduction in high Mr SUMO-containing species, pmt3-1 cells do not display an aberrant cell morphology or sensitivity to genotoxins or stress. Additionally, we demonstrate that two lysine residues in the N-terminus of S. pombe SUMO/Pmt3 (K14 and K30) can act as acceptor sites for SUMO chain formation in vitro. Inability to form SUMO chains results in aberrant cell and nuclear morphologies, including stretched and fragmented chromatin. SUMO chain mutants are sensitive to the DNA synthesis inhibitor, hydroxyurea (HU), but not to other genotoxins, such as UV, MMS or CPT. This implies a role for SUMO chains in the response to replication arrest in S. pomb
Oral-Facial-Digital syndrome Type I cells exhibit impaired DNA repair; unanticipated consequences of defective OFD1 outside of the cilia network
Defects in OFD1 underlie the clinically complex ciliopathy, Oral-Facial-Digital syndrome Type I (OFD Type I). Our understanding of the molecular, cellular and clinical consequences of impaired OFD1 originate from its characterised roles at the centrosome/basal body/cilia network. Nonetheless, the first described OFD1 interactors were components of the TIP60 histone acetyltransferase complex. We find that OFD1 can also localise to chromatin and its reduced expression is associated with mislocalization of TIP60 in patient-derived cell lines. TIP60 plays important roles in controlling DNA repair. OFD Type I cells exhibit reduced histone acetylation and altered chromatin dynamics in response to DNA double strand breaks (DSBs). Furthermore, reduced OFD1 impaired DSB repair via homologous recombination repair (HRR). OFD1 loss also adversely impacted upon the DSB-induced G2-M checkpoint, inducing a hypersensitive and prolonged arrest. Our findings show that OFD Type I patient cells have pronounced defects in the DSB-induced histone modification, chromatin remodelling and DSB-repair via HRR; effectively phenocopying loss of TIP60. These data extend our knowledge of the molecular and cellular consequences of impaired OFD1, demonstrating that loss of OFD1 can negatively impact upon important nuclear events; chromatin plasticity and DNA repair
Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions
During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph
Zebrafish homologs of 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes
Deletion or duplication of one copy of the human 16p11.2 interval is tightly associated with impaired brain function, including autism spectrum disorders (ASDs), intellectual disability disorder (IDD) and other phenotypes, indicating the importance of gene dosage in this copy number variant region (CNV). The core of this CNV includes 25 genes; however, the number of genes that contribute to these phenotypes is not known. Furthermore, genes whose functional levels change with deletion or duplication (termed 'dosage sensors'), which can associate the CNV with pathologies, have not been identified in this region. Using the zebrafish as a tool, a set of 16p11.2 homologs was identified, primarily on chromosomes 3 and 12. Use of 11 phenotypic assays, spanning the first 5 days of development, demonstrated that this set of genes is highly active, such that 21 out of the 22 homologs tested showed loss-of-function phenotypes. Most genes in this region were required for nervous system development - impacting brain morphology, eye development, axonal density or organization, and motor response. In general, human genes were able to substitute for the fish homolog, demonstrating orthology and suggesting conserved molecular pathways. In a screen for 16p11.2 genes whose function is sensitive to hemizygosity, the aldolase a (aldoaa) and kinesin family member 22 (kif22) genes were identified as giving clear phenotypes when RNA levels were reduced by ~50%, suggesting that these genes are deletion dosage sensors. This study leads to two major findings. The first is that the 16p11.2 region comprises a highly active set of genes, which could present a large genetic target and might explain why multiple brain function, and other, phenotypes are associated with this interval. The second major finding is that there are (at least) two genes with deletion dosage sensor properties among the 16p11.2 set, and these could link this CNV to brain disorders such as ASD and IDD.Simons Foundation (Grant Number 95091
Book Reviews
Reviews of the following books: Second Nature: An Environmental History of New England by Richard W. Judd; Hope and Fear in Margaret Chase Smith\u27s America: A Continuous Tangle by Gregory P. Gallant; The 2nd Maine Cavalry in the Civil War: A History and Roster by Ned Smith; Distilled in Maine: A History of Libations, Temperance and Craft Spirits by Kate McCarty; Bangor in World War II: From the Homefront to the Embattled Skies by David H. Bergquist; The Night the Sky Turned Red: The Story of the Great Portland Maine Fire of July 4th 1866, as told by Those Who Lived Through It by Allan M. Levinsk
- …
