678 research outputs found

    Diagenetic Changes in Long Bones in Central Florida: A Preliminary Macro- and Microscopic Comparison of Sun and Shade Microenvironments

    Get PDF
    In forensic investigations, the estimation of time since death is of utmost importance when examining decomposing bodies and skeletal remains. Current methodology typically focuses on the gross and macroscopic changes to human remains. Surprisingly, microscopic analysis of diagenetic change has not been fully researched in regards to time since death. The current study involved the analysis of diagenetic change in 15 pig (Sus scrofa) long bones from two microenvironments (sun and shade) in the subtropical environment of Central Florida. While the control bone was not placed in the field, seven bones were placed in the sun microenvironment and seven in the shade microenvironment. One bone was collected from each micro environment every other week for a duration of 14 weeks. The samples were then analyzed for gross and macroscopic taphonomic changes, which included soil staining, hemolysis staining, loss of bone grease, and penetration of hemolysis staining into the bone cortex. Microscope slides were then prepared using thin sections of the 15 long bones. Slides were then stained with Periodic Acid Schiffer\u27s stain and Hemotoxylin and Eosin stain and analyzed for Non-Wedl microscopic focal destruction (MFD), Wedl tunneling, and Haversian canal inclusions using standard light microscopy. While gross and macroscopic changes were not significant due to the short time interval studied, microscopic diagenetic changes that were observed included MFD and Wedl tunneling as early as four and six weeks, respectively. Group A (sun) demonstrated a greater occurrence of diagenetic change and greater diameter of MFD. Additionally, the maximum diameter of MFD steadily increased over time, suggesting a correlation between size of MFD and time since death. This pilot study demonstrates the possibility for future research to establish standards for estimating time since death using microscopic analysis. For example, further research should consider implementing a larger sample size, a longer postmortem interval, additional environments, comparative human samples, and a standardized methodology for preparing and analyzing the histological samples

    Joan Brugge: Running rings around cancer

    Get PDF
    Brugge has devoted her career to uncovering how perturbations in normal cellular processes give rise to cancer

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Lipid peroxidation regulates long-range wound detection through 5-lipoxygenase in zebrafish

    Get PDF
    Rapid wound detection by distant leukocytes is essential for antimicrobial defence and post-infection survival1. The reactive oxygen species hydrogen peroxide and the polyunsaturated fatty acid arachidonic acid are among the earliest known mediators of this process2–4. It is unknown whether or how these highly conserved cues collaborate to achieve wound detection over distances of several hundreds of micrometres within a few minutes. To investigate this, we locally applied arachidonic acid and skin-permeable peroxide by micropipette perfusion to unwounded zebrafish tail fins. As in wounds, arachidonic acid rapidly attracted leukocytes through dual oxidase (Duox) and 5-lipoxygenase (Alox5a). Peroxide promoted chemotaxis to arachidonic acid without being chemotactic on its own. Intravital biosensor imaging showed that wound peroxide and arachidonic acid converged on half-millimetre-long lipid peroxidation gradients that promoted leukocyte attraction. Our data suggest that lipid peroxidation functions as a spatial redox relay that enables long-range detection of early wound cues by immune cells, outlining a beneficial role for this otherwise toxic process

    Author Correction: Lipid peroxidation regulates long-range wound detection through 5-lipoxygenase in zebrafish

    Get PDF
    A Correction to this paper has been published: https://doi.org/10.1038/s41556-021-00683-0

    Molecular mechanisms of cell death:recommendations of the Nomenclature Committee on Cell Death 2018

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.</p

    Movements of marine fish and decapod crustaceans: Process, theory and application

    Get PDF
    Many marine species have a multi-phase ontogeny, with each phase usually associated with a spatially and temporally discrete set of movements. For many fish and decapod crustaceans that live inshore, a tri-phasic life cycle is widespread, involving: (1) the movement of planktonic eggs and larvae to nursery areas; (2) a range of routine shelter and foraging movements that maintain a home range; and (3) spawning migrations away from the home range to close the life cycle. Additional complexity is found in migrations that are not for the purpose of spawning and movements that result in a relocation of the home range of an individual that cannot be defined as an ontogenetic shift. Tracking and tagging studies confirm that life cycle movements occur across a wide range of spatial and temporal scales. This dynamic multi-scale complexity presents a significant problem in selecting appropriate scales for studying highly mobile marine animals. We address this problem by first comprehensively reviewing the movement patterns of fish and decapod crustaceans that use inshore areas and present a synthesis of life cycle strategies, together with five categories of movement. We then examine the scale-related limitations of traditional approaches to studies of animal-environment relationships. We demonstrate that studies of marine animals have rarely been undertaken at scales appropriate to the way animals use their environment and argue that future studies must incorporate animal movement into the design of sampling strategies. A major limitation of many studies is that they have focused on: (1) a single scale for animals that respond to their environment at multiple scales or (2) a single habitat type for animals that use multiple habitat types. We develop a hierarchical conceptual framework that deals with the problem of scale and environmental heterogeneity and we offer a new definition of 'habitat' from an organism-based perspective. To demonstrate that the conceptual framework can be applied, we explore the range of tools that are currently available for both measuring animal movement patterns and for mapping and quantifying marine environments at multiple scales. The application of a hierarchical approach, together with the coordinated integration of spatial technologies offers an unprecedented opportunity for researchers to tackle a range of animal-environment questions for highly mobile marine animals. Without scale-explicit information on animal movements many marine conservation and resource management strategies are less likely to achieve their primary objectives
    corecore