8,201 research outputs found
Chromogenic and Fluorogenic Sensing of Biological Thiols in Auqeous Solutions Using BODIPY-Based Reagents
Cataloged from PDF version of article.udicious design of BODIPY dyes carrying nitroethenyl substituents in conjugation with the BODIPY core yields dyes that respond to biological thiols by both absorbance and emission changes. Incorporation of solubilizing ethyleneglycol units ensures water solubility. The result is bright signaling of biologically relevant thiols in the longer wavelength region of the visible spectrum and in aqueous solutions
High resolution mapping of Twist to DNA in Drosophila embryos: Efficient functional analysis and evolutionary conservation
Cis-regulatory modules (CRMs) function by binding sequence specific transcription factors, but the relationship between in vivo physical binding and the regulatory capacity of factor-bound DNA elements remains uncertain. We investigate this relationship for the well-studied Twist factor in Drosophila melanogaster embryos by analyzing genome-wide factor occupancy and testing the functional significance of Twist occupied regions and motifs within regions. Twist ChIP-seq data efficiently identified previously studied Twist-dependent CRMs and robustly predicted new CRM activity in transgenesis, with newly identified Twist-occupied regions supporting diverse spatiotemporal patterns (>74% positive, n = 31). Some, but not all, candidate CRMs require Twist for proper expression in the embryo. The Twist motifs most favored in genome ChIP data (in vivo) differed from those most favored by Systematic Evolution of Ligands by EXponential enrichment (SELEX) (in vitro). Furthermore, the majority of ChIP-seq signals could be parsimoniously explained by a CABVTG motif located within 50 bp of the ChIP summit and, of these, CACATG was most prevalent. Mutagenesis experiments demonstrated that different Twist E-box motif types are not fully interchangeable, suggesting that the ChIP-derived consensus (CABVTG) includes sites having distinct regulatory outputs. Further analysis of position, frequency of occurrence, and sequence conservation revealed significant enrichment and conservation of CABVTG E-box motifs near Twist ChIP-seq signal summits, preferential conservation of ±150 bp surrounding Twist occupied summits, and enrichment of GA- and CA-repeat sequences near Twist occupied summits. Our results show that high resolution in vivo occupancy data can be used to drive efficient discovery and dissection of global and local cis-regulatory logic
Decay of one dimensional surface modulations
The relaxation process of one dimensional surface modulations is re-examined.
Surface evolution is described in terms of a standard step flow model.
Numerical evidence that the surface slope, D(x,t), obeys the scaling ansatz
D(x,t)=alpha(t)F(x) is provided. We use the scaling ansatz to transform the
discrete step model into a continuum model for surface dynamics. The model
consists of differential equations for the functions alpha(t) and F(x). The
solutions of these equations agree with simulation results of the discrete step
model. We identify two types of possible scaling solutions. Solutions of the
first type have facets at the extremum points, while in solutions of the second
type the facets are replaced by cusps. Interactions between steps of opposite
signs determine whether a system is of the first or second type. Finally, we
relate our model to an actual experiment and find good agreement between a
measured AFM snapshot and a solution of our continuum model.Comment: 18 pages, 6 figures in 9 eps file
Low-Energy Electron Microscopy Studies of Interlayer Mass Transport Kinetics on TiN(111)
In situ low-energy electron microscopy was used to study interlayer mass
transport kinetics during annealing of three-dimensional (3D) TiN(111) mounds,
consisting of stacked 2D islands, at temperatures T between 1550 and 1700 K. At
each T, the islands decay at a constant rate, irrespective of their initial
position in the mounds, indicating that mass is not conserved locally. From
temperature-dependent island decay rates, we obtain an activation energy of
2.8+/-0.3 eV. This is consistent with the detachment-limited decay of 2D TiN
islands on atomically-flat TiN(111) terraces [Phys. Rev. Lett. 89 (2002)
176102], but significantly smaller than the value, 4.5+/-0.2 eV, obtained for
bulk-diffusion-limited spiral step growth [Nature 429, 49 (2004)]. We model the
process based upon step flow, while accounting for step-step interactions, step
permeability, and bulk mass transport. The results show that TiN(111) steps are
highly permeable and exhibit strong repulsive temperature-dependent step-step
interactions that vary between 0.003 and 0.076 eV-nm. The rate-limiting process
controlling TiN(111) mound decay is surface, rather than bulk, diffusion in the
detachment-limited regime.Comment: 26 pages, 5 figure
The profile of a decaying crystalline cone
The decay of a crystalline cone below the roughening transition is studied.
We consider local mass transport through surface diffusion, focusing on the two
cases of diffusion limited and attachment-detachment limited step kinetics. In
both cases, we describe the decay kinetics in terms of step flow models.
Numerical simulations of the models indicate that in the attachment-detachment
limited case the system undergoes a step bunching instability if the repulsive
interactions between steps are weak. Such an instability does not occur in the
diffusion limited case. In stable cases the height profile, h(r,t), is flat at
radii r<R(t)\sim t^{1/4}. Outside this flat region the height profile obeys the
scaling scenario \partial h/\partial r = {\cal F}(r t^{-1/4}). A scaling ansatz
for the time-dependent profile of the cone yields analytical values for the
scaling exponents and a differential equation for the scaling function. In the
long time limit this equation provides an exact description of the discrete
step dynamics. It admits a family of solutions and the mechanism responsible
for the selection of a unique scaling function is discussed in detail. Finally
we generalize the model and consider permeable steps by allowing direct adatom
hops between neighboring terraces. We argue that step permeability does not
change the scaling behavior of the system, and its only effect is a
renormalization of some of the parameters.Comment: 25 pages, 18 postscript figure
Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data.
BackgroundAlthough studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results.MethodsWe used preterm baboons, mice, and humans (≤276/7 weeks gestation) to examine betamethasone's effects on ductus gene expression and constriction both in vitro and in vivo.ResultsIn mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone's effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K+ channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤256/7 weeks gestation, betamethasone's contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26-27 weeks gestation, betamethasone's contractile effects were apparent even in the absence of prostaglandin inhibitors.ConclusionsWe speculate that betamethasone's contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone's effects vary according to the infant's developmental age at birth
Purification and characterization of an intracellular chymotrypsin-like serine protease from Thermoplasma volcanium
An intracellular serine protease produced by Thermoplasma (Tp.) voleanium was purified using a combination of ammonium sulfate fractionation, ion exchange, and et-casein agarose affinity chromatography. This enzyme exhibited the highest activity and stability at pH 7.0, and at 50 degrees C. The purifed enzyme hydrolyzed synthetic peptides preferentially at the carboxy terminus of phenylalanine or leucine and was almost completely inhibited by PMSF, TPCK, and chymostatin, similarly to a chymotrypsin-like serine protease. Kinetic analysis of the Tp. volcanium protease reaction performed using N-succinyl-L-phenylalanine-p-nitroanilide as substrate revealed a K. value of 2.2 mm and a V-max value of 0.045 mu mol(-1) m1(-1) min(-1). Peptide hydrolyzing activity was enhanced by > 2-fold in the presence of Ca2+ and Mg2+ at 2-12 mm concentration. The serine protease is a monomer with a molecular weight of 42 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zymogram activity staining
Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study
Objectives: Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). Methods: In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. Results: In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. Conclusion: 28 d of beta-alanine supplementation at 6.4g d-1 appeared not to influence brain homocarnosine/ carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists
SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer
Pancreatic cancer has a devastating prognosis, with an overall 5-year survival rate of ~8%, restricted treatment options and characteristic molecular heterogeneity. SerpinB2 expression, particularly in the stromal compartment, is associated with reduced metastasis and prolonged survival in pancreatic ductal adenocarcinoma (PDAC) and our genomic analysis revealed that SERPINB2 is frequently deleted in PDAC. We show that SerpinB2 is required by stromal cells for normal collagen remodelling in vitro, regulating fibroblast interaction and engagement with collagen in the contracting matrix. In a pancreatic cancer allograft model, co-injection of PDAC cancer cells and SerpinB2(-/-) mouse embryonic fibroblasts (MEFs) resulted in increased tumour growth, aberrant remodelling of the extracellular matrix (ECM) and increased local invasion from the primary tumour. These tumours also displayed elevated proteolytic activity of the primary biochemical target of SerpinB2-urokinase plasminogen activator (uPA). In a large cohort of patients with resected PDAC, we show that increasing uPA mRNA expression was significantly associated with poorer survival following pancreatectomy. This study establishes a novel role for SerpinB2 in the stromal compartment in PDAC invasion through regulation of stromal remodelling and highlights the SerpinB2/uPA axis for further investigation as a potential therapeutic target in pancreatic cancer
- …
