228 research outputs found

    Comparison of eight diagnostic algorithms for liver fibrosis in hepatitis C: new algorithms are more precise and entirely noninvasive

    Get PDF
    The sequential algorithm for fibrosis evaluation (SAFE) and the Bordeaux algorithm (BA), which cross-check FibroTest with the aspartate aminotransferase-to-platelet ratio index (APRI) or FibroScan, are very accurate but provide only a binary diagnosis of significant fibrosis (SAFE or BA for Metavir F ≥ 2) or cirrhosis (SAFE or BA for F4). Therefore, in clinical practice, physicians have to apply the algorithm for F ≥ 2, and then, when needed, the algorithm for F4 (“successive algorithms”). We aimed to evaluate successive SAFE, successive BA, and a new, noninvasive, detailed classification of fibrosis. The study included 1785 patients with chronic hepatitis C, liver biopsy, blood fibrosis tests, and FibroScan (the latter in 729 patients). The most accurate synchronous combination of FibroScan with a blood test (FibroMeter) provided a new detailed (six classes) classification (FM+FS). Successive SAFE had a significantly (P < 10−3) lower diagnostic accuracy (87.3%) than individual SAFE for F ≥ 2 (94.6%) or SAFE for F4 (89.5%), and required significantly more biopsies (70.8% versus 64.0% or 6.4%, respectively, P < 10−3). Similarly, successive BA had significantly (P ≤ 10−3) lower diagnostic accuracy (84.7%) than individual BA for F ≥ 2 (88.3%) or BA for F4 (94.2%), and required significantly more biopsies (49.8% versus 34.6% or 24.6%, respectively, P < 10−3). The diagnostic accuracy of the FM+FS classification (86.7%) was not significantly different from those of successive SAFE or BA. However, this new classification required no biopsy. Conclusion: SAFE and BA for significant fibrosis or cirrhosis are very accurate. However, their successive use induces a significant decrease in diagnostic accuracy and a significant increase in required liver biopsy. A new fibrosis classification that synchronously combines two fibrosis tests was as accurate as successive SAFE or BA, while providing an entirely noninvasive (0% liver biopsy) and more precise (six versus two or three fibrosis classes) fibrosis diagnosis

    Nuclear Effects in Deep Inelastic Scattering of Charged-Current Neutrino off Nuclear

    Full text link
    Nuclear effect in the neutrino-nucleus charged-Current inelastic scattering process is studied by analyzing the CCFR and NuTeV data. Structure functions F2(x,Q2)F_2(x,Q^2) and xF3(x,Q2)xF_3(x,Q^2) as well as differential cross sections are calculated by using CTEQ parton distribution functions and EKRS and HKN nuclear parton distribution functions, and compared with the CCFR and NuTeV data. It is found that the corrections of nuclear effect to the differential cross section for the charged-current anti-neutrino scattering on nucleus are negligible, the EMC effect exists in the neutrino structure function F2(x,Q2)F_2(x,Q^2) in the large xx region, the shadowing and anti-shadowing effect occurs in the distribution functions of valence quarks in the small and medium xx region,respectively. It is also found that shadowing effects on F2(x,Q2)F_2(x,Q^2) in the small xx region in the neutrino-nucleus and the charged-lepton-nucleus deep inelastic scattering processes are different. It is clear that the neutrino-nucleus deep inelastic scattering data should further be employed in restricting nuclear parton distributions.Comment: 24 pages, 5 figure

    Strange particle production in proton-proton collisions at s=0.9\sqrt{s}=0.9 TeV with ALICE at the LHC

    Get PDF
    The production of mesons containing strange quarks (Ks0^0_s, ϕ\phi) and both singly and doubly strange baryons (Λ\Lambda, Anti-Λ\Lambda, and Ξ\Xi+Anti-Ξ\Xi) are measured at central rapidity in pp collisions at s\sqrt{s} = 0.9 TeV with the ALICE experiment at the LHC. The results are obtained from the analysis of about 250 k minimum bias events recorded in 2009. Measurements of yields (dN/dy) and transverse momentum spectra at central rapidities for inelastic pp collisions are presented. For mesons, we report yields () of 0.184 ±\pm 0.002 stat. ±\pm 0.006 syst. for Ks0^0_s and 0.021 ±\pm 0.004 stat. ±\pm 0.003 syst. for ϕ\phi. For baryons, we find = 0.048 ±\pm 0.001 stat. ±\pm 0.004 syst. for Λ\Lambda, 0.047 ±\pm 0.002 stat. ±\pm 0.005 syst. for Anti-Λ\Lambda and 0.0101 ±\pm 0.0020 stat. ±\pm 0.0009 syst. for Ξ\Xi+Anti-Ξ\Xi. The results are also compared with predictions for identified particle spectra from QCD-inspired models and provide a baseline for comparisons with both future pp measurements at higher energies and heavy-ion collisions.Comment: 33 pages, 21 captioned figures, 10 tables, authors from page 28, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/387

    Solar Neutrino Measurements in Super-Kamiokande-IV

    Full text link
    Upgraded electronics, improved water system dynamics, better calibration and analysis techniques allowed Super-Kamiokande-IV to clearly observe very low-energy 8B solar neutrino interactions, with recoil electron kinetic energies as low as 3.49 MeV. Super-Kamiokande-IV data-taking began in September of 2008; this paper includes data until February 2014, a total livetime of 1664 days. The measured solar neutrino flux is (2.308+-0.020(stat.) + 0.039-0.040(syst.)) x 106/(cm2sec) assuming no oscillations. The observed recoil electron energy spectrum is consistent with no distortions due to neutrino oscillations. An extended maximum likelihood fit to the amplitude of the expected solar zenith angle variation of the neutrino-electron elastic scattering rate in SK-IV results in a day/night asymmetry of (-3.6+-1.6(stat.)+-0.6(syst.))%. The SK-IV solar neutrino data determine the solar mixing angle as sin2 theta_12 = 0.327+0.026-0.031, all SK solar data (SK-I, SK-II, SK III and SKIV) measures this angle to be sin2 theta_12 = 0.334+0.027-0.023, the determined mass-squared splitting is Delta m2_21 = 4.8+1.5-0.8 x10-5 eV2.Comment: Submitted to Physical Review D; 23 pages, 40 figure

    Saying the Unsaid

    Get PDF
    p. 3

    Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology.

    Get PDF
    Altres ajuts: C.M. is supported by the Deutsche Forschungsgemeinschaft (DFG; SFB 894, TRR-219, and Ma 2528/7-1), the German Federal Ministry of Education and Science (BMBF; 01EO1504) and the Corona foundation. J.B. is supported by the DFG (SFB 1118) and the DZHK (German Centre for Cardiovascular Research) and by the BMBF. M.L. is supported by the DFG (SFB TRR 219M-03). R.B. is supported by the Netherlands Heart Foundation (CVON DOSIS 2014-40, CVON SHE-PREDICTS-HF 2017-21, and CVON RED-CVD 2017-11); and the Innovational Research Incentives Scheme program of the Netherlands Organization for Scientific Research (NWO VIDI, grant 917.13.350). N.M. is supported by the DFG (SFB TRR 219M-03, M-05). H.T. is supported by grants from the National Institutes of Health of the US Public Health Service (HL-RO1 061483 and HL-RO1 073162). A.B.G. was supported by grants from the Ministerio de Educación y Ciencia , Fundació La MARATÓ de TV3 (201502, 201516), CIBER Cardiovascular (CB16/11/00403), and AdvanceCat 2014-2020. H.B. is supported by the DFG (Bu2126/3-1). A.D.C. was supported by 'FIL' funds for research from University of Parma. A.G. was supported by grants from the European Union Commission's FP7 programme (HOMAGE and FIBROTARGETS) and ERA-CVD Joint Transnational Call 2016 LYMIT-DIS. G.R. acknowledges recent funding from The Cunningham Trust, MRC (MR/K012924/1) and the Diabetes UK RW and JM Collins studentship. S.H. received funding from the European Union Commission's Seventh Framework programme (2007-2013) under grant agreement N° 305507 (HOMAGE), N° 602904 (FIBROTARGETS) and N° 602156 (HECATOS). S.H. acknowledges the support from the Netherlands Cardiovascular Research Initiative: an initiative with support of the Dutch Heart Foundation, CVON-ARENA-PRIME, CVON-EARLY HFPEF, and SHE-PREDICTS. This research is co-financed as a PPP-allowance Research and Innovation by the Ministry of Economic Affairs within Top Sector Life sciences & Health

    Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response

    Get PDF
    © 2019, The Author(s). Molecular mechanisms driving disease course and response to therapy in ulcerative colitis (UC) are not well understood. Here, we use RNAseq to define pre-treatment rectal gene expression, and fecal microbiota profiles, in 206 pediatric UC patients receiving standardised therapy. We validate our key findings in adult and paediatric UC cohorts of 408 participants. We observe a marked suppression of mitochondrial genes and function across cohorts in active UC, and that increasing disease severity is notable for enrichment of adenoma/adenocarcinoma and innate immune genes. A subset of severity genes improves prediction of corticosteroid-induced remission in the discovery cohort; this gene signature is also associated with response to anti-TNFα and anti-α 4 β 7 integrin in adults. The severity and therapeutic response gene signatures were in turn associated with shifts in microbes previously implicated in mucosal homeostasis. Our data provide insights into UC pathogenesis, and may prioritise future therapies for nonresponders to current approaches

    Advanced Virgo Plus. Future perspectives

    Get PDF
    While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector’s reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar - CRIS 2022 held in September 2022 in Napoli

    Exclusive photoproduction of pi degrees up to large values of Mandelstam variables s, t, and u with CLAS

    Get PDF
    Exclusive photoproduction cross sections have been measured for the process γppπ0(e+e(γ))\gamma p \rightarrow p\pi^0(e^+e^-(\gamma)) with the Dalitz decay final state using tagged photon energies in the range of Eγ=1.2755.425E_{\gamma} = 1.275-5.425 GeV. The complete angular distribution of the final state π0\pi^0, for the entire photon energy range up to large values of tt and uu, has been measured for the first time. The data obtained show that the cross section dσ/dtd\sigma/dt, at mid to large angles, decreases with energy as s6.89±0.26s^{-6.89\pm 0.26} . This is in agreement with the perturbative QCD quark counting rule prediction of s7s^{-7} . Paradoxically, the size of angular distribution of measured cross sections is greatly underestimated by the QCD based Generalized Parton Distribution mechanism at highest available invariant energy s=11s=11 GeV2^2. At the same time, the Regge exchange based models for π0\pi^0 photoproduction are more consistent with experimental data.Comment: 7 pages, 6 figure
    corecore