359 research outputs found

    Heavy Quark Potentials and Quarkonia Binding

    Full text link
    I review recent progress in studying in-medium modification of inter-quark forces at finite temperature in lattice QCD. Some applications to the problem of quarkonium binding in potential models is also discussed.Comment: Invited plenary talk presented at Hard Probes 2004, International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions, Nov. 4-10, 2004, Ericeira, Portuga

    Strange particle production in proton-proton collisions at s=0.9\sqrt{s}=0.9 TeV with ALICE at the LHC

    Get PDF
    The production of mesons containing strange quarks (Ks0^0_s, ϕ\phi) and both singly and doubly strange baryons (Λ\Lambda, Anti-Λ\Lambda, and Ξ\Xi+Anti-Ξ\Xi) are measured at central rapidity in pp collisions at s\sqrt{s} = 0.9 TeV with the ALICE experiment at the LHC. The results are obtained from the analysis of about 250 k minimum bias events recorded in 2009. Measurements of yields (dN/dy) and transverse momentum spectra at central rapidities for inelastic pp collisions are presented. For mesons, we report yields () of 0.184 ±\pm 0.002 stat. ±\pm 0.006 syst. for Ks0^0_s and 0.021 ±\pm 0.004 stat. ±\pm 0.003 syst. for ϕ\phi. For baryons, we find = 0.048 ±\pm 0.001 stat. ±\pm 0.004 syst. for Λ\Lambda, 0.047 ±\pm 0.002 stat. ±\pm 0.005 syst. for Anti-Λ\Lambda and 0.0101 ±\pm 0.0020 stat. ±\pm 0.0009 syst. for Ξ\Xi+Anti-Ξ\Xi. The results are also compared with predictions for identified particle spectra from QCD-inspired models and provide a baseline for comparisons with both future pp measurements at higher energies and heavy-ion collisions.Comment: 33 pages, 21 captioned figures, 10 tables, authors from page 28, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/387

    Planck intermediate results X : Physics of the hot gas in the Coma cluster

    Get PDF
    Peer reviewe

    Planck Intermediate Results II: Comparison of Sunyaev–Zeldovich measurements from Planck and from the Arcminute Microkelvin Imager for 11 galaxy clusters

    Get PDF
    A comparison is presented of Sunyaev–Zeldovich measurements for 11 galaxy clusters as obtained by Planck and by the ground-based interferom- eter, the Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric Generalised Navarro, Frenk & White (GNFW) model for the cluster gas pressure profile, we jointly constrain the integrated Compton-Y parameter (Y500) and the scale radius (θ500) of each cluster. Our resulting constraints in the Y500 − θ500 2D parameter space derived from the two instruments overlap significantly for eight of the clusters, although, overall, there is a tendency for AMI to find the Sunyaev–Zeldovich signal to be smaller in angular size and fainter than Planck. Significant discrepancies exist for the three remaining clusters in the sample, namely A1413, A1914, and the newly-discovered Planck cluster PLCKESZ G139.59+24.18. The robustness of the analysis of both the Planck and AMI data is demonstrated through the use of detailed simulations, which also discount confusion from residual point (radio) sources and from diffuse astrophysical foregrounds as possible explanations for the discrepancies found. For a subset of our cluster sample, we have investigated the dependence of our results on the assumed pressure profile by repeating the analysis adopting the best-fitting GNFW profile shape which best matches X-ray observations. Adopting the best-fitting profile shape from the X-ray data does not, in general, resolve the discrepancies found in this subset of five clusters. Though based on a small sample, our results suggest that the adopted GNFW model may not be sufficiently flexible to describe clusters universally

    Integration of Sequence Data from a Consanguineous Family with Genetic Data from an Outbred Population Identifies PLB1 as a Candidate Rheumatoid Arthritis Risk Gene

    Get PDF
    Integrating genetic data from families with highly penetrant forms of disease together with genetic data from outbred populations represents a promising strategy to uncover the complete frequency spectrum of risk alleles for complex traits such as rheumatoid arthritis (RA). Here, we demonstrate that rare, low-frequency and common alleles at one gene locus, phospholipase B1 (PLB1), might contribute to risk of RA in a 4-generation consanguineous pedigree (Middle Eastern ancestry) and also in unrelated individuals from the general population (European ancestry). Through identity-by-descent (IBD) mapping and whole-exome sequencing, we identified a non-synonymous c.2263G. C (p.G755R) mutation at the PLB1 gene on 2q23, which significantly co-segregated with RA in family members with a dominant mode of inheritance (P = 0.009). We further evaluated PLB1 variants and risk of RA using a GWAS meta-analysis of 8,875 RA cases and 29,367 controls of European ancestry. We identified significant contributions of two independent non-coding variants near PLB1 with risk of RA (rs116018341 [MAF = 0.042] and rs116541814 [MAF = 0.021], combined P = 3.26 x 10(-6)). Finally, we performed deep exon sequencing of PLB1 in 1,088 RA cases and 1,088 controls (European ancestry), and identified suggestive dispersion of rare protein-coding variant frequencies between cases and controls (P = 0.049 for C-alpha test and P = 0.055 for SKAT). Together, these data suggest that PLB1 is a candidate risk gene for RA. Future studies to characterize the full spectrum of genetic risk in the PLB1 genetic locus are warranted

    ATLAS sensitivity to top quark and W boson polarization in ttˉt\bar{t} events

    Full text link
    Stringent tests on top quark production and decay mechanisms are provided by the measurement of the top quark and W boson polarization. This paper presents a detailed study of these two measurements with the ATLAS detector, in the semileptonic (ttbar -> W W b bbar -> l nu j1 j2 b bbar) and dileptonic (ttbar -> W W b bbar -> l nu l nu b bbar) ttbar channels. It is based on leading-order Monte Carlo generators and on a fast simulation of the detector. A particular attention is paid to the systematic uncertainties, which dominate the statistical errors after one LHC year at low luminosity (10 fb^{-1}), and to the background estimate. Combining results from both channel studies, the longitudinal component of the W polarization (F\_0) can be measured with a 2% accuracy and the right-handed component (F\_R) with a 1% precision with 10 fb^{-1}. Even though the top quarks in ttbar pairs are not polarized, a large asymmetry is expected within the Standard Model in the like-spin versus unlike-spin pair production. A 4% precision on this asymmetry measurement is possible with 10 fb^{-1}, after combining results from both channel studies. These promising results are converted in a sensitivity to new physics, such as tWb anomalous couplings, top decay to charged Higgs boson, or new s-channels (heavy resonance, gravitons) in ttbar production.Comment: 41+2 pages, 20 figures, ATLAS scientific note SN-ATLAS-2005-05

    Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report on the first measurement of the triangular v3v_3, quadrangular v4v_4, and pentagonal v5v_5 charged particle flow in Pb-Pb collisions at 2.76 TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show that the triangular flow can be described in terms of the initial spatial anisotropy and its fluctuations, which provides strong constraints on its origin. In the most central events, where the elliptic flow v2v_2 and v3v_3 have similar magnitude, a double peaked structure in the two-particle azimuthal correlations is observed, which is often interpreted as a Mach cone response to fast partons. We show that this structure can be naturally explained from the measured anisotropic flow Fourier coefficients.Comment: 10 pages, 4 figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/387

    Advanced Virgo Plus. Future perspectives

    Get PDF
    While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector’s reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar - CRIS 2022 held in September 2022 in Napoli

    Physics of the HL-LHC, and Perspectives at the HE-LHC

    Get PDF
    corecore