359 research outputs found
Heavy Quark Potentials and Quarkonia Binding
I review recent progress in studying in-medium modification of inter-quark
forces at finite temperature in lattice QCD. Some applications to the problem
of quarkonium binding in potential models is also discussed.Comment: Invited plenary talk presented at Hard Probes 2004, International
Conference on Hard and Electromagnetic Probes of High Energy Nuclear
Collisions, Nov. 4-10, 2004, Ericeira, Portuga
Strange particle production in proton-proton collisions at TeV with ALICE at the LHC
The production of mesons containing strange quarks (K, ) and both
singly and doubly strange baryons (, Anti-, and
+Anti-) are measured at central rapidity in pp collisions at
= 0.9 TeV with the ALICE experiment at the LHC. The results are
obtained from the analysis of about 250 k minimum bias events recorded in 2009.
Measurements of yields (dN/dy) and transverse momentum spectra at central
rapidities for inelastic pp collisions are presented. For mesons, we report
yields () of 0.184 0.002 stat. 0.006 syst. for K and
0.021 0.004 stat. 0.003 syst. for . For baryons, we find
= 0.048 0.001 stat. 0.004 syst. for , 0.047
0.002 stat. 0.005 syst. for Anti- and 0.0101 0.0020 stat.
0.0009 syst. for +Anti-. The results are also compared with
predictions for identified particle spectra from QCD-inspired models and
provide a baseline for comparisons with both future pp measurements at higher
energies and heavy-ion collisions.Comment: 33 pages, 21 captioned figures, 10 tables, authors from page 28,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/387
Planck Intermediate Results II: Comparison of Sunyaev–Zeldovich measurements from Planck and from the Arcminute Microkelvin Imager for 11 galaxy clusters
A comparison is presented of Sunyaev–Zeldovich measurements for 11 galaxy clusters as obtained by Planck and by the ground-based interferom- eter, the Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric Generalised Navarro, Frenk & White (GNFW) model for the cluster gas pressure profile, we jointly constrain the integrated Compton-Y parameter (Y500) and the scale radius (θ500) of each cluster. Our resulting constraints in the Y500 − θ500 2D parameter space derived from the two instruments overlap significantly for eight of the clusters, although, overall, there is a tendency for AMI to find the Sunyaev–Zeldovich signal to be smaller in angular size and fainter than Planck. Significant discrepancies exist for the three remaining clusters in the sample, namely A1413, A1914, and the newly-discovered Planck cluster PLCKESZ G139.59+24.18. The robustness of the analysis of both the Planck and AMI data is demonstrated through the use of detailed simulations, which also discount confusion from residual point (radio) sources and from diffuse astrophysical foregrounds as possible explanations for the discrepancies found. For a subset of our cluster sample, we have investigated the dependence of our results on the assumed pressure profile by repeating the analysis adopting the best-fitting GNFW profile shape which best matches X-ray observations. Adopting the best-fitting profile shape from the X-ray data does not, in general, resolve the discrepancies found in this subset of five clusters. Though based on a small sample, our results suggest that the adopted GNFW model may not be sufficiently flexible to describe clusters universally
Integration of Sequence Data from a Consanguineous Family with Genetic Data from an Outbred Population Identifies PLB1 as a Candidate Rheumatoid Arthritis Risk Gene
Integrating genetic data from families with highly penetrant forms of disease together with genetic data from outbred populations represents a promising strategy to uncover the complete frequency spectrum of risk alleles for complex traits such as rheumatoid arthritis (RA). Here, we demonstrate that rare, low-frequency and common alleles at one gene locus, phospholipase B1 (PLB1), might contribute to risk of RA in a 4-generation consanguineous pedigree (Middle Eastern ancestry) and also in unrelated individuals from the general population (European ancestry). Through identity-by-descent (IBD) mapping and whole-exome sequencing, we identified a non-synonymous c.2263G. C (p.G755R) mutation at the PLB1 gene on 2q23, which significantly co-segregated with RA in family members with a dominant mode of inheritance (P = 0.009). We further evaluated PLB1 variants and risk of RA using a GWAS meta-analysis of 8,875 RA cases and 29,367 controls of European ancestry. We identified significant contributions of two independent non-coding variants near PLB1 with risk of RA (rs116018341 [MAF = 0.042] and rs116541814 [MAF = 0.021], combined P = 3.26 x 10(-6)). Finally, we performed deep exon sequencing of PLB1 in 1,088 RA cases and 1,088 controls (European ancestry), and identified suggestive dispersion of rare protein-coding variant frequencies between cases and controls (P = 0.049 for C-alpha test and P = 0.055 for SKAT). Together, these data suggest that PLB1 is a candidate risk gene for RA. Future studies to characterize the full spectrum of genetic risk in the PLB1 genetic locus are warranted
ATLAS sensitivity to top quark and W boson polarization in events
Stringent tests on top quark production and decay mechanisms are provided by
the measurement of the top quark and W boson polarization. This paper presents
a detailed study of these two measurements with the ATLAS detector, in the
semileptonic (ttbar -> W W b bbar -> l nu j1 j2 b bbar) and dileptonic (ttbar
-> W W b bbar -> l nu l nu b bbar) ttbar channels. It is based on leading-order
Monte Carlo generators and on a fast simulation of the detector. A particular
attention is paid to the systematic uncertainties, which dominate the
statistical errors after one LHC year at low luminosity (10 fb^{-1}), and to
the background estimate. Combining results from both channel studies, the
longitudinal component of the W polarization (F\_0) can be measured with a 2%
accuracy and the right-handed component (F\_R) with a 1% precision with 10
fb^{-1}. Even though the top quarks in ttbar pairs are not polarized, a large
asymmetry is expected within the Standard Model in the like-spin versus
unlike-spin pair production. A 4% precision on this asymmetry measurement is
possible with 10 fb^{-1}, after combining results from both channel studies.
These promising results are converted in a sensitivity to new physics, such as
tWb anomalous couplings, top decay to charged Higgs boson, or new s-channels
(heavy resonance, gravitons) in ttbar production.Comment: 41+2 pages, 20 figures, ATLAS scientific note SN-ATLAS-2005-05
Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at 2.76 TeV
We report on the first measurement of the triangular , quadrangular
, and pentagonal charged particle flow in Pb-Pb collisions at 2.76
TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show
that the triangular flow can be described in terms of the initial spatial
anisotropy and its fluctuations, which provides strong constraints on its
origin. In the most central events, where the elliptic flow and
have similar magnitude, a double peaked structure in the two-particle azimuthal
correlations is observed, which is often interpreted as a Mach cone response to
fast partons. We show that this structure can be naturally explained from the
measured anisotropic flow Fourier coefficients.Comment: 10 pages, 4 figures, published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/387
Advanced Virgo Plus. Future perspectives
While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector’s reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar - CRIS 2022 held in September 2022 in Napoli
- …
