3,211,885 research outputs found
Stirling cycle cryogenic cooler
A long lifetime Stirling cycle cryogenic cooler particularly adapted for space applications is described. It consists of a compressor section centrally aligned end to end with an expansion section, and respectively includes a reciprocating compressor piston and displacer radially suspended in interconnecting cylindrical housings by active magnetic bearings and has adjacent reduced clearance regions so as to be in noncontacting relationship therewith and wherein one or more of these regions operate as clearance seals. The piston and displacer are reciprocated in their housings by linear drive motors to vary the volume of respectively adjacent compression and expansion spaces which contain a gaseous working fluid and a thermal regenerator to effect Stirling cycle cryogenic cooling
Bernoulli numbers and solitons
We present a new formula for the Bernoulli numbers as the following integral
This formula is motivated by the
results of Fairlie and Veselov, who discovered the relation of Bernoulli
polynomials with soliton theory.Comment: 5 page
The 'Square Root' of the Interacting Dirac Equation
The 'square root' of the interacting Dirac equation is constructed. The
obtained equations lead to the Yang-Mills superfield with the appropriate
equations of motion for the component fields.Comment: 6 page
The dynamical equation of the spinning electron
We obtain by invariance arguments the relativistic and non-relativistic
invariant dynamical equations of a classical model of a spinning electron. We
apply the formalism to a particular classical model which satisfies Dirac's
equation when quantised. It is shown that the dynamics can be described in
terms of the evolution of the point charge which satisfies a fourth order
differential equation or, alternatively, as a system of second order
differential equations by describing the evolution of both the center of mass
and center of charge of the particle. As an application of the found dynamical
equations, the Coulomb interaction between two spinning electrons is
considered. We find from the classical viewpoint that these spinning electrons
can form bound states under suitable initial conditions. Since the classical
Coulomb interaction of two spinless point electrons does not allow for the
existence of bound states, it is the spin structure that gives rise to new
physical phenomena not described in the spinless case. Perhaps the paper may be
interesting from the mathematical point of view but not from the point of view
of physics.Comment: Latex2e, 14 pages, 5 figure
Spatiotemporal instability of a confined capillary jet
Recent experimental studies on the instability appearance of capillary jets
have revealed the capabilities of linear spatiotemporal instability analysis to
predict the parametrical map where steady jetting or dripping takes place. In
this work, we present an extensive analytical, numerical and experimental
analysis of confined capillary jets extending previous studies. We propose an
extended, accurate analytic model in the limit of low Reynolds flows, and
introduce a numerical scheme to predict the system response when the liquid
inertia is not negligible. Theoretical predictions show a remarkable accuracy
with results from the extensive experimental exploration provided.Comment: Submitted to the Physical Review E (20-March-2008
Luttinger States at the Edge
An effective wavefunction for the edge excitations in the Fractional quantum
Hall effect can be found by dimensionally reducing the bulk wavefunction.
Treated this way the Laughlin wavefunction yields a Luttinger
model ground state. We identify the edge-electron field with a Luttinger
hyper-fermion operator, and the edge electron itself with a non-backscattering
Bogoliubov quasi-particle. The edge-electron propagator may be calculated
directly from the effective wavefunction using the properties of a
one-dimensional one-component plasma, provided a prescription is adopted which
is sensitive to the extra flux attached to the electrons
Can useful toroidal current be driven by classical viscoresistive Alfvén waves?
Simple, yet exact, analytic solutions for the shear and compressional Alfvén wave are obtained for helical magnetohydrodynamic (MHD) waves in cylindrical geometry with both resistivity and viscosity included. The current driven by all possible combinations of these waves is examined in the quasilinear regime (i.e., where the magnetic field produced by the driven current is not self-consistently included in the equilibrium where the wave equations are derived). It is found in all cases that it is not possible to drive significant bulk axial current with small amplitude wave fields. Thus, any useful low-frequency current drive scheme will have to be based on phenomena more complicated than those discussed here
- …
