2,888 research outputs found
High Resolution Spectrometry of Leaf and Canopy Chemistry for Biochemical Cycling
High-resolution laboratory spectrophotometer and Airborne Imaging Spectrometer (AIS) data were used to analyze forest leaf and canopy chemistry. Fundamental stretching frequencies of organic bonds in the visible, near infrared and short-wave infrared are indicative of concentrations and total content of nitrogen, phosphorous, starch and sugar. Laboratory spectrophotometer measurements showed very strong negative correlations with nitrogen (measured using wet chemistry) in the visible wavelengths. Strong correlations with green wet canopy weight in the atmospheric water absorption windows were observed in the AIS data. A fairly strong negative correlation between the AIS data at 1500 nm and total nitrogen and nitrogen concentration was evident. This relationship corresponds very closely to protein absorption features near 1500 nm
Overview: Computer vision and machine learning for microstructural characterization and analysis
The characterization and analysis of microstructure is the foundation of
microstructural science, connecting the materials structure to its composition,
process history, and properties. Microstructural quantification traditionally
involves a human deciding a priori what to measure and then devising a
purpose-built method for doing so. However, recent advances in data science,
including computer vision (CV) and machine learning (ML) offer new approaches
to extracting information from microstructural images. This overview surveys CV
approaches to numerically encode the visual information contained in a
microstructural image, which then provides input to supervised or unsupervised
ML algorithms that find associations and trends in the high-dimensional image
representation. CV/ML systems for microstructural characterization and analysis
span the taxonomy of image analysis tasks, including image classification,
semantic segmentation, object detection, and instance segmentation. These tools
enable new approaches to microstructural analysis, including the development of
new, rich visual metrics and the discovery of
processing-microstructure-property relationships.Comment: submitted to Materials and Metallurgical Transactions
Multiple Projection Optical Diffusion Tomography with Plane Wave Illumination
We describe a new data collection scheme for optical diffusion tomography in
which plane wave illumination is combined with multiple projections in the slab
imaging geometry. Multiple projection measurements are performed by rotating
the slab around the sample. The advantage of the proposed method is that the
measured data can be much more easily fitted into the dynamic range of most
commonly used detectors. At the same time, multiple projections improve image
quality by mutually interchanging the depth and transverse directions, and the
scanned (detection) and integrated (illumination) surfaces. Inversion methods
are derived for image reconstructions with extremely large data sets. Numerical
simulations are performed for fixed and rotated slabs
The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS): Spectral Maps of the Asteroid Bennu
The OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) is a point
spectrometer covering the spectral range of 0.4 to 4.3 microns (25,000-2300
cm-1). Its primary purpose is to map the surface composition of the asteroid
Bennu, the target asteroid of the OSIRIS-REx asteroid sample return mission.
The information it returns will help guide the selection of the sample site. It
will also provide global context for the sample and high spatial resolution
spectra that can be related to spatially unresolved terrestrial observations of
asteroids. It is a compact, low-mass (17.8 kg), power efficient (8.8 W
average), and robust instrument with the sensitivity needed to detect a 5%
spectral absorption feature on a very dark surface (3% reflectance) in the
inner solar system (0.89-1.35 AU). It, in combination with the other
instruments on the OSIRIS-REx Mission, will provide an unprecedented view of an
asteroid's surface.Comment: 14 figures, 3 tables, Space Science Reviews, submitte
An Interferometric and Spectroscopic Analysis of the Multiple Star System HD 193322
The star HD 193322 is a remarkable multiple system of massive stars that lies
at the heart of the cluster Collinder 419. Here we report on new spectroscopic
observations and radial velocities of the narrow-lined component Ab1 that we
use to determine its orbital motion around a close companion Ab2 ( d)
and around a distant third star Aa ( y).We have also obtained long
baseline interferometry of the target in the -band with the CHARA
Array that we use in two ways. First, we combine published speckle
interferometric measurements with CHARA separated fringe packet measurements to
improve the visual orbit for the wide Aa,Ab binary. Second, we use measurements
of the fringe packet from Aa to calibrate the visibility of the fringes of the
Ab1,Ab2 binary, and we analyze these fringe visibilities to determine the
visual orbit of the close system. The two most massive stars, Aa and Ab1, have
masses of approximately 21 and , respectively, and their spectral
line broadening indicates that they represent extremes of fast and slow
projected rotational velocity, respectively
IR-dust observations of Comet Tempel 2 with CRAF VIMS
Measurement strategies are now being planned for using the Visual and Infrared Mapping Spectrometer (VIMS) to observe the asteroid Hestia, and the nucleus, and the gas and dust in the coma of comet P/Tempel 2 as part of the Comet Rendezvous Asteroid Flyby (CRAF) mission. The spectral range of VIMS will cover wavelengths from 0.35 to 5.2 micrometers, with a spectral resolution of 11 nm from 0.35 to 2.4 micrometers and of 22 nm from 2.4 to 5.2 micrometers. The instantaneous field of view (IFOV) provided by the foreoptics is 0.5 milliradians, and the current design of the instrument provides for a scanning secondary mirror which will scan a swath of length 72 IFOVs. The CRAF high resolution scan platform motion will permit slewing VIMS in a direction perpendicular to the swath. This enables the building of a two dimensional image in any or all wavelength channels. Important measurements of the dust coma will include the onset of early coma activity, the mapping of gas and dust jets and correlations with active nucleus areas, observations of the dust coma from various scattering phase angles, coverage of the low wavelength portion of the thermal radiation, and the 3.4 micrometer hydrocarbon emission. A description of the VIMS instrument is presented
The prevalence and incidence of mental ill-health in adults with autism and intellectual disabilities
The prevalence, and incidence, of mental ill-health in adults with intellectual disabilities and autism were compared with the whole population with intellectual disabilities, and with controls, matched individually for age, gender, ability-level, and Down syndrome. Although the adults with autism had a higher point prevalence of problem behaviours compared with the whole adult population with intellectual disabilities, compared with individually matched controls there was no difference in prevalence, or incidence of either problem behaviours or other mental ill-health. Adults with autism who had problem behaviours were less likely to recover over a two-year period than were their matched controls. Apparent differences in rates of mental ill-health are accounted for by factors other than autism, including Down syndrome and ability level
Nanodust detection near 1 AU from spectral analysis of Cassini/RPWS radio data
Nanodust grains of a few nanometer in size are produced near the Sun by
collisional break-up of larger grains and picked-up by the magnetized solar
wind. They have so far been detected at 1 AU by only the two STEREO spacecraft.
Here we analyze the spectra measured by the radio and plasma wave instrument
onboard Cassini during the cruise phase close to Earth orbit; they exhibit
bursty signatures similar to those observed by the same instrument in
association to nanodust stream impacts on Cassini near Jupiter. The observed
wave level and spectral shape reveal impacts of nanoparticles at about 300
km/s, with an average flux compatible with that observed by the radio and
plasma wave instrument onboard STEREO and with the interplanetary flux models
- …
