948 research outputs found

    Near mean-field behavior in the generalized Burridge-Knopoff earthquake model with variable range stress transfer

    Full text link
    Simple models of earthquake faults are important for understanding the mechanisms for their observed behavior in nature, such as Gutenberg-Richter scaling. Because of the importance of long-range interactions in an elastic medium, we generalize the Burridge-Knopoff slider-block model to include variable range stress transfer. We find that the Burridge-Knopoff model with long-range stress transfer exhibits qualitatively different behavior than the corresponding long-range cellular automata models and the usual Burridge-Knopoff model with nearest-neighbor stress transfer, depending on how quickly the friction force weakens with increasing velocity. Extensive simulations of quasiperiodic characteristic events, mode-switching phenomena, ergodicity, and waiting-time distributions are also discussed. Our results are consistent with the existence of a mean-field critical point and have important implications for our understanding of earthquakes and other driven dissipative systems.Comment: 24 pages 12 figures, revised version for Phys. Rev.

    Breaking a one-dimensional chain: fracture in 1 + 1 dimensions

    Full text link
    The breaking rate of an atomic chain stretched at zero temperature by a constant force can be calculated in a quasiclassical approximation by finding the localized solutions ("bounces") of the equations of classical dynamics in imaginary time. We show that this theory is related to the critical cracks of stressed solids, because the world lines of the atoms in the chain form a two-dimensional crystal, and the bounce is a crack configuration in (unstable) mechanical equilibrium. Thus the tunneling time, Action, and breaking rate in the limit of small forces are determined by the classical results of Griffith. For the limit of large forces we give an exact bounce solution that describes the quantum fracture and classical crack close to the limit of mechanical stability. This limit can be viewed as a critical phenomenon for which we establish a Levanyuk-Ginzburg criterion of weakness of fluctuations, and propose a scaling argument for the critical regime. The post-tunneling dynamics is understood by the analytic continuation of the bounce solutions to real time.Comment: 15 pages, 5 figure

    Avalanches in Breakdown and Fracture Processes

    Full text link
    We investigate the breakdown of disordered networks under the action of an increasing external---mechanical or electrical---force. We perform a mean-field analysis and estimate scaling exponents for the approach to the instability. By simulating two-dimensional models of electric breakdown and fracture we observe that the breakdown is preceded by avalanche events. The avalanches can be described by scaling laws, and the estimated values of the exponents are consistent with those found in mean-field theory. The breakdown point is characterized by a discontinuity in the macroscopic properties of the material, such as conductivity or elasticity, indicative of a first order transition. The scaling laws suggest an analogy with the behavior expected in spinodal nucleation.Comment: 15 pages, 12 figures, submitted to Phys. Rev. E, corrected typo in authors name, no changes to the pape

    Fluctuations and correlations in sandpile models

    Get PDF
    We perform numerical simulations of the sandpile model for non-vanishing driving fields hh and dissipation rates ϵ\epsilon. Unlike simulations performed in the slow driving limit, the unique time scale present in our system allows us to measure unambiguously response and correlation functions. We discuss the dynamic scaling of the model and show that fluctuation-dissipation relations are not obeyed in this system.Comment: 5 pages, latex, 4 postscript figure

    Fracture of disordered solids in compression as a critical phenomenon: I. Statistical mechanics formalism

    Get PDF
    This is the first of a series of three articles that treats fracture localization as a critical phenomenon. This first article establishes a statistical mechanics based on ensemble averages when fluctuations through time play no role in defining the ensemble. Ensembles are obtained by dividing a huge rock sample into many mesoscopic volumes. Because rocks are a disordered collection of grains in cohesive contact, we expect that once shear strain is applied and cracks begin to arrive in the system, the mesoscopic volumes will have a wide distribution of different crack states. These mesoscopic volumes are the members of our ensembles. We determine the probability of observing a mesoscopic volume to be in a given crack state by maximizing Shannon's measure of the emergent crack disorder subject to constraints coming from the energy-balance of brittle fracture. The laws of thermodynamics, the partition function, and the quantification of temperature are obtained for such cracking systems.Comment: 11 pages, 2 figure

    Gutenberg Richter and Characteristic Earthquake Behavior in Simple Mean-Field Models of Heterogeneous Faults

    Full text link
    The statistics of earthquakes in a heterogeneous fault zone is studied analytically and numerically in the mean field version of a model for a segmented fault system in a three-dimensional elastic solid. The studies focus on the interplay between the roles of disorder, dynamical effects, and driving mechanisms. A two-parameter phase diagram is found, spanned by the amplitude of dynamical weakening (or ``overshoot'') effects (epsilon) and the normal distance (L) of the driving forces from the fault. In general, small epsilon and small L are found to produce Gutenberg-Richter type power law statistics with an exponential cutoff, while large epsilon and large L lead to a distribution of small events combined with characteristic system-size events. In a certain parameter regime the behavior is bistable, with transitions back and forth from one phase to the other on time scales determined by the fault size and other model parameters. The implications for realistic earthquake statistics are discussed.Comment: 21 pages, RevTex, 6 figures (ps, eps

    Self-organized criticality and synchronization in a lattice model of integrate-and-fire oscillators

    Full text link
    We introduce two coupled map lattice models with nonconservative interactions and a continuous nonlinear driving. Depending on both the degree of conservation and the convexity of the driving we find different behaviors, ranging from self-organized criticality, in the sense that the distribution of events (avalanches) obeys a power law, to a macroscopic synchronization of the population of oscillators, with avalanches of the size of the system.Comment: 4 pages, Revtex 3.0, 3 PostScript figures available upon request to [email protected]

    Heat kernel regularization of the effective action for stochastic reaction-diffusion equations

    Full text link
    The presence of fluctuations and non-linear interactions can lead to scale dependence in the parameters appearing in stochastic differential equations. Stochastic dynamics can be formulated in terms of functional integrals. In this paper we apply the heat kernel method to study the short distance renormalizability of a stochastic (polynomial) reaction-diffusion equation with real additive noise. We calculate the one-loop {\emph{effective action}} and its ultraviolet scale dependent divergences. We show that for white noise a polynomial reaction-diffusion equation is one-loop {\emph{finite}} in d=0d=0 and d=1d=1, and is one-loop renormalizable in d=2d=2 and d=3d=3 space dimensions. We obtain the one-loop renormalization group equations and find they run with scale only in d=2d=2.Comment: 21 pages, uses ReV-TeX 3.
    corecore