6,050 research outputs found
A new orthogonalization procedure with an extremal property
Various methods of constructing an orthonomal set out of a given set of
linearly independent vectors are discussed. Particular attention is paid to the
Gram-Schmidt and the Schweinler-Wigner orthogonalization procedures. A new
orthogonalization procedure which, like the Schweinler- Wigner procedure, is
democratic and is endowed with an extremal property is suggested.Comment: 7 pages, latex, no figures, To appear in J. Phys
A study of transport suppression in an undoped AlGaAs/GaAs quantum dot single-electron transistor
We report a study of transport blockade features in a quantum dot
single-electron transistor, based on an undoped AlGaAs/GaAs heterostructure. We
observe suppression of transport through the ground state of the dot, as well
as negative differential conductance at finite source-drain bias. The
temperature and magnetic field dependence of these features indicate the
couplings between the leads and the quantum dot states are suppressed. We
attribute this to two possible mechanisms: spin effects which determine whether
a particular charge transition is allowed based on the change in total spin,
and the interference effects that arise from coherent tunneling of electrons in
the dot
Femtoscopy of the system shape fluctuations in heavy ion collisions
Dipole, triangular, and higher harmonic flow that have an origin in the
initial density fluctuations has gained a lot of attention as they can provide
additional important information about the dynamical properties (e.g.
viscosity) of the system. The fluctuations in the initial geometry should be
also reflected in the detail shape and velocity field of the system at
freeze-out. In this talk I discuss the possibility to measure such fluctuations
by means of identical and non-identical particle interferometry.Comment: 4 pages, Proceedings of Quark Matter 2011 Conference, May 23 - May
28, Annecy, Franc
Spacetime Defects: von K\'arm\'an vortex street like configurations
A special arrangement of spinning strings with dislocations similar to a von
K\'arm\'an vortex street is studied. We numerically solve the geodesic
equations for the special case of a test particle moving along twoinfinite rows
of pure dislocations and also discuss the case of pure spinning defects.Comment: 9 pages, 2figures, CQG in pres
Primordial Entropy Production and Lambda-driven Inflation from Quantum Einstein Gravity
We review recent work on renormalization group (RG) improved cosmologies
based upon a RG trajectory of Quantum Einstein Gravity (QEG) with realistic
parameter values. In particular we argue that QEG effects can account for the
entire entropy of the present Universe in the massless sector and give rise to
a phase of inflationary expansion. This phase is a pure quantum effect and
requires no classical inflaton field.Comment: 12 pages, 4 figures, IGCG-07 Pun
Quantum key distribution using a triggered quantum dot source emitting near 1.3 microns
We report the distribution of a cryptographic key, secure from photon number
splitting attacks, over 35 km of optical fiber using single photons from an
InAs quantum dot emitting ~1.3 microns in a pillar microcavity. Using below
GaAs-bandgap optical excitation, we demonstrate suppression of multiphoton
emission to 10% of the Poissonian level without detector dark count
subtraction. The source is incorporated into a phase encoded interferometric
scheme implementing the BB84 protocol for key distribution over standard
telecommunication optical fiber. We show a transmission distance advantage over
that possible with (length-optimized) uniform intensity weak coherent pulses at
1310 nm in the same system.Comment: 4 pages, 4 figure
The impact of QCD plasma instabilities on bottom-up thermalization
QCD plasma instabilities, caused by an anisotropic momentum distributions of
the particles in the plasma, are likely to play an important role in
thermalization in heavy ion collisions. We consider plasmas with two different
components of particles, one strongly anisotropic and one isotropic or nearly
isotropic. The isotropic component does not eliminate instabilities but it
decreases their growth rates. We investigate the impact of plasma instabilities
on the first stage of the ``bottom-up'' thermalization scenario in which such a
two-component plasma emerges, and find that even in the case of non-abelian
saturation instabilities qualitatively change the bottom-up picture.Comment: 12 pages, latex, one typo corrected, several minor changes in the
abstract and the text, to appear in JHE
Magnetic permeability of near-critical 3d abelian Higgs model and duality
The three-dimensional abelian Higgs model has been argued to be dual to a
scalar field theory with a global U(1) symmetry. We show that this duality,
together with the scaling and universality hypotheses, implies a scaling law
for the magnetic permeablity chi_m near the line of second order phase
transition: chi_m ~ t^nu, where t is the deviation from the critical line and
nu ~ 0.67 is a critical exponent of the O(2) universality class. We also show
that exactly on the critical lines, the dependence of magnetic induction on
external magnetic field is quadratic, with a proportionality coefficient
depending only on the gauge coupling. These predictions provide a way for
testing the duality conjecture on the lattice in the Coulomb phase and at the
phase transion.Comment: 11 pages; updated references and small changes, published versio
A review of the decoherent histories approach to the arrival time problem in quantum theory
We review recent progress in understanding the arrival time problem in
quantum mechanics, from the point of view of the decoherent histories approach
to quantum theory. We begin by discussing the arrival time problem, focussing
in particular on the role of the probability current in the expected classical
solution. After a brief introduction to decoherent histories we review the use
of complex potentials in the construction of appropriate class operators. We
then discuss the arrival time problem for a particle coupled to an environment,
and review how the arrival time probability can be expressed in terms of a POVM
in this case. We turn finally to the question of decoherence of the
corresponding histories, and we show that this can be achieved for simple
states in the case of a free particle, and for general states for a particle
coupled to an environment.Comment: 10 pages. To appear in DICE 2010 conference proceeding
- …
