190 research outputs found

    Exact Solution of a Jamming Transition: Closed Equations for a Bootstrap Percolation Problem

    Full text link
    Jamming, or dynamical arrest, is a transition at which many particles stop moving in a collective manner. In nature it is brought about by, for example, increasing the packing density, changing the interactions between particles, or otherwise restricting the local motion of the elements of the system. The onset of collectivity occurs because, when one particle is blocked, it may lead to the blocking of a neighbor. That particle may then block one of its neighbors, these effects propagating across some typical domain of size named the dynamical correlation length. When this length diverges, the system becomes immobile. Even where it is finite but large the dynamics is dramatically slowed. Such phenomena lead to glasses, gels, and other very long-lived nonequilibrium solids. The bootstrap percolation models are the simplest examples describing these spatio-temporal correlations. We have been able to solve one such model in two dimensions exactly, exhibiting the precise evolution of the jamming correlations on approach to arrest. We believe that the nature of these correlations and the method we devise to solve the problem are quite general. Both should be of considerable help in further developing this field.Comment: 17 pages, 4 figure

    Facilitated spin models on Bethe lattice: bootstrap percolation, mode-coupling transition and glassy dynamics

    Full text link
    We show that facilitated spin models of cooperative dynamics introduced by Fredrickson and Andersen display on Bethe lattices a glassy behaviour similar to the one predicted by the mode-coupling theory of supercooled liquids and the dynamical theory of mean-field disordered systems. At low temperature such cooperative models show a two-step relaxation and their equilibration time diverges at a finite temperature according to a power-law. The geometric nature of the dynamical arrest corresponds to a bootstrap percolation process which leads to a phase space organization similar to the one of mean-field disordered systems. The relaxation dynamics after a subcritical quench exhibits aging and converges asymptotically to the threshold states that appear at the bootstrap percolation transition.Comment: 7 pages, 6 figures, minor changes, final version to appear in Europhys. Let

    Replica bounds for diluted non-Poissonian spin systems

    Get PDF
    In this paper we extend replica bounds and free energy subadditivity arguments to diluted spin-glass models on graphs with arbitrary, non-Poissonian degree distribution. The new difficulties specific of this case are overcome introducing an interpolation procedure that stresses the relation between interpolation methods and the cavity method. As a byproduct we obtain self-averaging identities that generalize the Ghirlanda-Guerra ones to the multi-overlap case.Comment: Latex file, 15 pages, 2 eps figures; Weak point revised and corrected; Misprints correcte

    Cooperative Behavior of Kinetically Constrained Lattice Gas Models of Glassy Dynamics

    Full text link
    Kinetically constrained lattice models of glasses introduced by Kob and Andersen (KA) are analyzed. It is proved that only two behaviors are possible on hypercubic lattices: either ergodicity at all densities or trivial non-ergodicity, depending on the constraint parameter and the dimensionality. But in the ergodic cases, the dynamics is shown to be intrinsically cooperative at high densities giving rise to glassy dynamics as observed in simulations. The cooperativity is characterized by two length scales whose behavior controls finite-size effects: these are essential for interpreting simulations. In contrast to hypercubic lattices, on Bethe lattices KA models undergo a dynamical (jamming) phase transition at a critical density: this is characterized by diverging time and length scales and a discontinuous jump in the long-time limit of the density autocorrelation function. By analyzing generalized Bethe lattices (with loops) that interpolate between hypercubic lattices and standard Bethe lattices, the crossover between the dynamical transition that exists on these lattices and its absence in the hypercubic lattice limit is explored. Contact with earlier results are made via analysis of the related Fredrickson-Andersen models, followed by brief discussions of universality, of other approaches to glass transitions, and of some issues relevant for experiments.Comment: 59 page

    The Ising-Sherrington-Kirpatrick model in a magnetic field at high temperature

    Get PDF
    We study a spin system on a large box with both Ising interaction and Sherrington-Kirpatrick couplings, in the presence of an external field. Our results are: (i) existence of the pressure in the limit of an infinite box. When both Ising and Sherrington-Kirpatrick temperatures are high enough, we prove that: (ii) the value of the pressure is given by a suitable replica symmetric solution, and (iii) the fluctuations of the pressure are of order of the inverse of the square of the volume with a normal distribution in the limit. In this regime, the pressure can be expressed in terms of random field Ising models

    Jamming percolation and glassy dynamics

    Full text link
    We present a detailed physical analysis of the dynamical glass-jamming transition which occurs for the so called Knight models recently introduced and analyzed in a joint work with D.S.Fisher \cite{letterTBF}. Furthermore, we review some of our previous works on Kinetically Constrained Models. The Knights models correspond to a new class of kinetically constrained models which provide the first example of finite dimensional models with an ideal glass-jamming transition. This is due to the underlying percolation transition of particles which are mutually blocked by the constraints. This jamming percolation has unconventional features: it is discontinuous (i.e. the percolating cluster is compact at the transition) and the typical size of the clusters diverges faster than any power law when ρρc\rho\nearrow\rho_c. These properties give rise for Knight models to an ergodicity breaking transition at ρc\rho_c: at and above ρc\rho_{c} a finite fraction of the system is frozen. In turn, this finite jump in the density of frozen sites leads to a two step relaxation for dynamic correlations in the unjammed phase, analogous to that of glass forming liquids. Also, due to the faster than power law divergence of the dynamical correlation length, relaxation times diverge in a way similar to the Vogel-Fulcher law.Comment: Submitted to the special issue of Journal of Statistical Physics on Spin glasses and related topic

    Facilitated spin models: recent and new results

    Full text link
    Facilitated or kinetically constrained spin models (KCSM) are a class of interacting particle systems reversible w.r.t. to a simple product measure. Each dynamical variable (spin) is re-sampled from its equilibrium distribution only if the surrounding configuration fulfills a simple local constraint which \emph{does not involve} the chosen variable itself. Such simple models are quite popular in the glass community since they display some of the peculiar features of glassy dynamics, in particular they can undergo a dynamical arrest reminiscent of the liquid/glass transitiom. Due to the fact that the jumps rates of the Markov process can be zero, the whole analysis of the long time behavior becomes quite delicate and, until recently, KCSM have escaped a rigorous analysis with the notable exception of the East model. In these notes we will mainly review several recent mathematical results which, besides being applicable to a wide class of KCSM, have contributed to settle some debated questions arising in numerical simulations made by physicists. We will also provide some interesting new extensions. In particular we will show how to deal with interacting models reversible w.r.t. to a high temperature Gibbs measure and we will provide a detailed analysis of the so called one spin facilitated model on a general connected graph.Comment: 30 pages, 3 figure

    Fluctuations in the coarsening dynamics of the O(N) model: are they similar to those in glassy systems?

    Full text link
    We study spatio-temporal fluctuations in the non-equilibrium dynamics of the d dimensional O(N) in the large N limit. We analyse the invariance of the dynamic equations for the global correlation and response in the slow ageing regime under transformations of time. We find that these equations are invariant under scale transformations. We extend this study to the action in the dynamic generating functional finding similar results. This model therefore falls into a different category from glassy problems in which full time-reparametrisation invariance, a larger symmetry that emcompasses time scale invariance, is expected to be realised asymptotically. Consequently, the spatio-temporal fluctuations of the large N O(N) model should follow a different pattern from that of glassy systems. We compute the fluctuations of local, as well as spatially separated, two-field composite operators and responses, and we confront our results with the ones found numerically for the 3d Edwards-Anderson model and kinetically constrained lattice gases. We analyse the dependence of the fluctuations of the composite operators on the growing domain length and we compare to what has been found in super-cooled liquids and glasses. Finally, we show that the development of time-reparametrisation invariance in glassy systems is intimately related to a well-defined and finite effective temperature, specified from the modification of the fluctuation-dissipation theorem out of equilibrium. We then conjecture that the global asymptotic time-reparametrisation invariance is broken down to time scale invariance in all coarsening systems.Comment: 57 pages, 5 figure

    Desing and Validation of a Light Inference System to Support Embedded Context Reasoning

    Full text link
    Embedded context management in resource-constrained devices (e.g. mobile phones, autonomous sensors or smart objects) imposes special requirements in terms of lightness for data modelling and reasoning. In this paper, we explore the state-of-the-art on data representation and reasoning tools for embedded mobile reasoning and propose a light inference system (LIS) aiming at simplifying embedded inference processes offering a set of functionalities to avoid redundancy in context management operations. The system is part of a service-oriented mobile software framework, conceived to facilitate the creation of context-aware applications—it decouples sensor data acquisition and context processing from the application logic. LIS, composed of several modules, encapsulates existing lightweight tools for ontology data management and rule-based reasoning, and it is ready to run on Java-enabled handheld devices. Data management and reasoning processes are designed to handle a general ontology that enables communication among framework components. Both the applications running on top of the framework and the framework components themselves can configure the rule and query sets in order to retrieve the information they need from LIS. In order to test LIS features in a real application scenario, an ‘Activity Monitor’ has been designed and implemented: a personal health-persuasive application that provides feedback on the user’s lifestyle, combining data from physical and virtual sensors. In this case of use, LIS is used to timely evaluate the user’s activity level, to decide on the convenience of triggering notifications and to determine the best interface or channel to deliver these context-aware alerts.
    corecore