761 research outputs found
Two-band second moment model and an interatomic potential for caesium
A semi-empirical formalism is presented for deriving interatomic potentials
for materials such as caesium or cerium which exhibit volume collapse phase
transitions. It is based on the Finnis-Sinclair second moment tight binding
approach, but incorporates two independent bands on each atom. The potential is
cast in a form suitable for large-scale molecular dynamics, the computational
cost being the evaluation of short ranged pair potentials. Parameters for a
model potential for caesium are derived and tested
Temperature dependence in interatomic potentials and an improved potential for Ti
The process of deriving an interatomic potentials represents an attempt to
integrate out the electronic degrees of freedom from the full quantum
description of a condensed matter system. In practice it is the derivatives of
the interatomic potentials which are used in molecular dynamics, as a model for
the forces on a system. These forces should be the derivative of the free
energy of the electronic system, which includes contributions from the entropy
of the electronic states. This free energy is weakly temperature dependent, and
although this can be safely neglected in many cases there are some systems
where the electronic entropy plays a significant role. Here a method is
proposed to incorporate electronic entropy in the Sommerfeld approximation into
empirical potentials. The method is applied as a correction to an existing
potential for titanium. Thermal properties of the new model are calculated, and
a simple method for fixing the melting point and solid-solid phase transition
temperature for existing models fitted to zero temperature data is presented.Comment: CCP 201
Effect of Cluster Formation on Isospin Asymmetry in the Liquid-Gas Phase Transition Region
Nuclear matter within the liquid-gas phase transition region is investigated
in a mean-field two-component Fermi-gas model. Following largely analytic
considerations, it is shown that: (1) Due to density dependence of asymmetry
energy, some of the neutron excess from the high-density phase could be
expelled into the low-density region. (2) Formation of clusters in the gas
phase tends to counteract this trend, making the gas phase more liquid-like and
reducing the asymmetry in the gas phase. Flow of asymmetry between the
spectator and midrapidity region in reactions is discussed and a possible
inversion of the flow direction is indicated.Comment: 9 pages,3 figures, RevTe
Origin of complex crystal structures of elements at pressure
We present a unifying theory for the observed complex structures of the
sp-bonded elements under pressure based on nearly free electron picture (NFE).
In the intermediate pressure regime the dominant contribution to crystal
structure arises from Fermi-surface Brillouin zone (FSBZ) interactions -
structures which allow this are favoured. This simple theory explains the
observed crystal structures, transport properties, the evolution of internal
and unit cell parameters with pressure. We illustrate it with experimental data
for these elements and ab initio calculation for Li.Comment: 4 pages 5 figure
Total energy calculation of high pressure selenium: The origin of incommensurate modulations in Se-IV and the instability of proposed Se-II
We present calculation of the high pressure crystal structures in selenium,
including rational approximants to the recently reported incommensurate phases.
We show how the incommensurate phases can be intuitively explained in terms of
imaginary phonon frequencies arising from Kohn anomalies in the putative
undistorted phase. We also find inconsistencies between the calculated and
experimental Se-II phase - the calculations show it to be a metastable metal
while the experiment finds a stable semiconductor. We propose that the
experimentally reported structure is probably in error.Comment: 4 pages 4 figure
Recommended from our members
“Tales and Adventures”: G.A. Henty’s Union Jack and the Competitive World of Publishing for Boys in the 1880s’
In the competitive publishing environment of the late nineteenth century, writers and magazines had to distinguish themselves carefully from potential rivals. This article examines how G.A. Henty’s quality boys’ weekly, Union Jack (1880-83), attempted to secure a niche in the juvenile publishing market by deliberately distinguishing itself from other papers as a literary, imperialist and “healthy” publication. The article explores the design and marketing techniques of the magazine, its status as a fiction paper, the high calibre of its contributors, and its aggressive rhetoric in targeting an exclusively masculine audience. It argues that while Union Jack was marketed as a niche publication, it eventually failed to distinguish itself sufficiently to survive in an extremely competitive environment
First-principles study of the structural energetics of PdTi and PtTi
The structural energetics of PdTi and PtTi have been studied using
first-principles density-functional theory with pseudopotentials and a
plane-wave basis. We predict that in both materials, the experimentally
reported orthorhombic phase will undergo a low-temperature phase
transition to a monoclinic ground state. Within a soft-mode framework,
we relate the structure to the cubic structure, observed at high
temperature, and the structure to via phonon modes strongly
coupled to strain. In contrast to NiTi, the structure is extremely close
to hcp. We draw on the analogy to the bcc-hcp transition to suggest likely
transition mechanisms in the present case.Comment: 8 pages 5 figure
The equation of state of solid nickel aluminide
The pressure-volume-temperature equation of state of the intermetallic
compound NiAl was calculated theoretically, and compared with experimental
measurements. Electron ground states were calculated for NiAl in the CsCl
structure, using density functional theory, and were used to predict the cold
compression curve and the density of phonon states. The Rose form of
compression curve was found to reproduce the ab initio calculations well in
compression but exhibited significant deviations in expansion. A
thermodynamically-complete equation of state was constructed for NiAl. Shock
waves were induced in crystals of NiAl by the impact of laser-launched Cu
flyers and by launching NiAl flyers into transparent windows of known
properties. The TRIDENT laser was used to accelerate the flyers to speeds
between 100 and 600m/s. Point and line-imaging laser Doppler velocimetry was
used to measure the acceleration of the flyer and the surface velocity history
of the target. The velocity histories were used to deduce the stress state, and
hence states on the principal Hugoniot and the flow stress. Flyers and targets
were recovered from most experiments. The effect of elasticity and plastic flow
in the sample and window was assessed. The ambient isotherm reproduced static
compression data very well, and the predicted Hugoniot was consistent with
shock compression data
Daisyworld: a review
Daisyworld is a simple planetary model designed to show the long-term effects of coupling between life and its environment. Its original form was introduced by James Lovelock as a defense against criticism that his Gaia theory of the Earth as a self-regulating homeostatic system requires teleological control rather than being an emergent property. The central premise, that living organisms can have major effects on the climate system, is no longer controversial. The Daisyworld model has attracted considerable interest from the scientific community and has now established itself as a model independent of, but still related to, the Gaia theory. Used widely as both a teaching tool and as a basis for more complex studies of feedback systems, it has also become an important paradigm for the understanding of the role of biotic components when modeling the Earth system. This paper collects the accumulated knowledge from the study of Daisyworld and provides the reader with a concise account of its important properties. We emphasize the increasing amount of exact analytic work on Daisyworld and are able to bring together and summarize these results from different systems for the first time. We conclude by suggesting what a more general model of life-environment interaction should be based on
- …
