76,284 research outputs found
Densities and energies of nuclei in dilute matter
We explore the ground-state properties of nuclear clusters embedded in a gas
of nucleons with the help of Skyrme-Hartree-Fock microscopic calculations. Two
alternative representations of clusters are introduced, namely coordinate-space
and energy-space clusters. We parameterize their density profiles in spherical
symmetry in terms of basic properties of the energy density functionals used
and propose an analytical, Woods-Saxon density profile whose parameters depend,
not only on the composition of the cluster, but also of the nucleon gas. We
study the clusters' energies with the help of the local-density approximation,
validated through our microscopic results. We find that the volume energies of
coordinate-space clusters are determined by the saturation properties of
matter, while the surface energies are strongly affected by the presence of the
gas. We conclude that both the density profiles and the cluster energies are
strongly affected by the gas and discuss implications for the nuclear EoS and
related perspectives. Our study provides a simple, but microscopically
motivated modeling of the energetics of clusterized matter at subsaturation
densities, for direct use in consequential applications of astrophysical
interest.Comment: 20 pages, incl. 12 figure
Some aspects of the phase diagram of nuclear matter relevant to compact stars
Dense matter as it can be found in core-collapse supernovae and neutron stars
is expected to exhibit different phase transitions which impact the matter
composition and the equation of state, with important consequences on the
dynamics of core-collapse supernova explosion and on the structure of neutron
stars. In this paper we will address the specific phenomenology of two of such
transitions, namely the crust-core solid-liquid transition at sub-saturation
density, and the possible strange transition at super-saturation density in the
presence of hyperonic degrees of freedom. Concerning the neutron star
crust-core phase transition at zero and finite temperature, it will be shown
that, as a consequence of the presence of long-range Coulomb interactions, a
clusterized phase is expected which is not accessible in the grand-canonical
ensemble. A specific quasi-particle model will be introduced and some
quantitative results relevant for the supernova dynamics will be shown. The
opening of hyperonic degrees of freedom at higher densities corresponding to
the neutron stars core also modifies the equation of state. The general
characteristics and order of phase transitions in this regime will be analyzed
in the framework of a self-consistent mean-field approach.Comment: arXiv admin note: substantial text overlap with arXiv:1206.4924,
arXiv:1301.695
On the determination of flow stress using bulge test and mechanical measurement
The standard uniaxial tensile test is a widely accepted method to obtain relevant properties of sheet metal materials. These fundamental parameters can be used in numerical modeling of sheet forming operations to predict and assess formability and failure analysis. However the range of strain obtained from tensile test is limited and therefore if one will need further information on material behavior, extrapolation of tensile data is performed. The bulge test is an alternative to obtain ranges of deformation higher than tensile test, thus being possible to obtain non-extrapolated data for material behavior. Several methods may be used to obtain stress-strain data from bulge test, but a common concept is behind them, which needs the measurement of bulge pressure, curvature of bulge specimen, its thickness at the pole and the application of membrane theory. Concerning such measurements, optical methods are being used recently but classical mechanical methods are still an alternative with its own strengths. This paper presents the use and development of a mechanical measuring system to be incorporated in a hydraulic bulge test for flow curve determination, which permits real-time data acquisition under controlled strain rates up to high levels of plastic deformation. Numerical simulations of bulge test using FEM are performed and a sensitivity analysis is done for some influencing variables used in measurements, thus giving some directions in the design and use of the experimental mechanical system. Also, first experimental results are presented, showing an efficient testing procedure method for real time data acquisition with a stable evaluation of the flow curve.open11617Nsciescopu
EMCCDs for space applications
This paper describes a qualification programme for Electron-Multiplication Charge Coupled Devices (EMCCDs) for use in space applications. While the presented results are generally applicable, the programme was carried out in the context of CCD development for the Radial Velocity Spectrometer (RVS) instrument on the European Space Agency's cornerstone Gaia mission. We discuss the issues of device radiation tolerance, charge transfer efficiency at low signal levels and life time effects on the electron-multiplication gain. The development of EMCCD technology to allow operation at longer wavelengths using high resistivity silicon, and the cryogenic characterisation of EMCCDs are also described
3D spatially-resolved optical energy density enhanced by wavefront shaping
We study the three-dimensional (3D) spatially-resolved distribution of the
energy density of light in a 3D scattering medium upon the excitation of open
transmission channels. The open transmission channels are excited by spatially
shaping the incident optical wavefronts. To probe the local energy density, we
excite isolated fluorescent nanospheres distributed inside the medium. From the
spatial fluorescent intensity pattern we obtain the position of each
nanosphere, while the total fluorescent intensity gauges the energy density.
Our 3D spatially-resolved measurements reveal that the local energy density
versus depth (z) is enhanced up to 26X at the back surface of the medium, while
it strongly depends on the transverse (x; y) position. We successfully
interpret our results with a newly developed 3D model that considers the
time-reversed diffusion starting from a point source at the back surface. Our
results are relevant for white LEDs, random lasers, solar cells, and biomedical
optics
Light propagation and emission in complex photonic media
We provide an introduction to complex photonic media, that is, composite
materials with spatial inhomogeneities that are distributed over length scales
comparable to or smaller than the wavelength of light. This blossoming field is
firmly rooted in condensed matter physics, in optics, and in materials science.
Many stimulating analogies exist with other wave phenomena such as sound and
seismology, X-rays, neutrons. The field has a rich history, which has led to
many applications in lighting, novel lasers, light harvesting, microscopy, and
bio optics. We provide a brief overview of complex photonic media with
different classes of spatial order, varying from completely random to
long-periodically ordered structures, quasi crystalline and aperiodic
structures, and arrays of cavities. In addition to shaping optical waves by
suitable photonic nanostructures, the realization is quickly arising that the
spatial shaping of optical wavefronts with spatial light modulators
dramatically increases the number of control parameters. As a result, it is
becoming possible for instance to literally see through completely opaque
complex media. We discuss a unified view of complex photonic media by means of
a photonic interaction strength parameter. This parameter gauges the
interaction of light with any complex photonic medium, and allows to compare
complex media from different classes for similar applications.Comment: 8 pages, 2 figures, Light Localisation and Lasing: Random and
Quasi-Random Photonic Structures, Eds. M. Ghulinyan and L. Pavesi, (Cambridge
Univ. Press, Cambridge, 2015) Ch. 1, p.
Varying the effective refractive index to measure optical transport in random media
We introduce a new approach for measuring both the effective medium and the
transport properties of light propagation in heterogeneous media. Our method
utilizes the conceptual equivalence of frequency variation with a change in the
effective index of refraction. Experimentally, we measure intensity
correlations via spectrally resolved refractive index tuning, controlling the
latter via changes in the ambient pressure. Our experimental results perfectly
match a generalized transport theory that incorporates the effective medium and
predicts a precise value for the diffusion constant. Thus, we directly confirm
the applicability of the effective medium concept in strongly scattering
materials.Comment: 5 pages, 5 figure
Spatial Extent of Random Laser Modes
We have experimentally studied the distribution of the spatial extent of modes and the crossover from essentially single-mode to distinctly multimode behavior inside a porous gallium phosphide random laser. This system serves as a paragon for random lasers due to its exemplary high index contrast. In the multimode regime, we observed mode competition. We have measured the distribution of spectral mode spacings in our emission spectra and found level repulsion that is well described by the Gaussian orthogonal ensemble of random-matrix theory
- …
