202 research outputs found
Spectroscopy of Ne for the thermonuclear O()Ne and F()O reaction rates
Uncertainties in the thermonuclear rates of the
O()Ne and F()O reactions
affect model predictions of light curves from type I X-ray bursts and the
amount of the observable radioisotope F produced in classical novae,
respectively. To address these uncertainties, we have studied the nuclear
structure of Ne over MeV and MeV using
the F(He,t)Ne reaction. We find the values of the
4.14 and 4.20 MeV levels to be consistent with and
respectively, in contrast to previous assumptions. We confirm the recently
observed triplet of states around 6.4 MeV, and find evidence that the state at
6.29 MeV, just below the proton threshold, is either broad or a doublet. Our
data also suggest that predicted but yet unobserved levels may exist near the
6.86 MeV state. Higher resolution experiments are urgently needed to further
clarify the structure of Ne around the proton threshold before a
reliable F()O rate for nova models can be determined.Comment: 5 pages, 3 figures, Phys. Rev. C (in press
Second T = 3/2 state in B and the isobaric multiplet mass equation
Recent high-precision mass measurements and shell model calculations~[Phys.
Rev. Lett. {\bf 108}, 212501 (2012)] have challenged a longstanding explanation
for the requirement of a cubic isobaric multiplet mass equation for the lowest
isospin quartet. The conclusions relied upon the choice of the
excitation energy for the second state in B, which had two
conflicting measurements prior to this work. We remeasured the energy of the
state using the reaction and significantly disagree
with the most recent measurement. Our result supports the contention that
continuum coupling in the most proton-rich member of the quartet is not the
predominant reason for the large cubic term required for nuclei
Two-neutron transfer reaction mechanisms in C(He,He)C using a realistic three-body He model
The reaction mechanisms of the two-neutron transfer reaction
C(He,He) have been studied at 30 MeV at the TRIUMF ISAC-II
facility using the SHARC charged-particle detector array. Optical potential
parameters have been extracted from the analysis of the elastic scattering
angular distribution. The new potential has been applied to the study of the
transfer angular distribution to the 2 8.32 MeV state in C, using
a realistic 3-body He model and advanced shell model calculations for the
carbon structure, allowing to calculate the relative contributions of the
simultaneous and sequential two-neutron transfer. The reaction model provides a
good description of the 30 MeV data set and shows that the simultaneous process
is the dominant transfer mechanism. Sensitivity tests of optical potential
parameters show that the final results can be considerably affected by the
choice of optical potentials. A reanalysis of data measured previously at 18
MeV however, is not as well described by the same reaction model, suggesting
that one needs to include higher order effects in the reaction mechanism.Comment: 9 pages, 9 figure
Characterization of the proposed 4-α cluster state candidate in O 16
The O16(α,α′) reaction was studied at θlab=0 at an incident energy of Elab=200 MeV using the K600 magnetic spectrometer at iThemba LABS. Proton decay and α decay from the natural parity states were observed in a large-acceptance silicon strip detector array at backward angles. The coincident charged-particle measurements were used to characterize the decay channels of the 06+ state in O16 located at Ex=15.097(5) MeV. This state is identified by several theoretical cluster calculations to be a good candidate for the 4-α cluster state. The results of this work suggest the presence of a previously unidentified resonance at Ex≈15 MeV that does not exhibit a 0+ character. This unresolved resonance may have contaminated previous observations of the 06+ state
α Clustering in Si 28 probed through the identification of high-lying 0+ states
Background: Aspects of the nuclear structure of light α-conjugate nuclei have long been associated with nuclear clustering based on α particles and heavier α-conjugate systems such as C12 and O16. Such structures are associated with strong deformation corresponding to superdeformed or even hyperdeformed bands. Superdeformed bands have been identified in Ca40 and neighboring nuclei and find good description within shell model, mean-field, and α-cluster models. The utility of the α-cluster description may be probed further by extending such studies to more challenging cases comprising lighter α-conjugate nuclei such as Mg24, Si28, and S32. Purpose: The purpose of this study is to look for the number and energy of isoscalar 0+ states in Si28. These states are the potential bandheads for superdeformed bands in Si28 corresponding to the exotic structures of Si28. Of particular interest is locating the 0+ bandhead of the previously identified superdeformed band in Si28. Methods: α-particle inelastic scattering from a Sinat target at very forward angles including 0 has been performed at the iThemba Laboratory for Accelerator-Based Sciences in South Africa. Scattered particles corresponding to the excitation energy region of 6 to 14 MeV were momentum-analysed in the K600 magnetic spectrometer and detected at the focal plane using two multiwire drift chambers and two plastic scintillators. Results: Several 0+ states have been identified above 9 MeV in Si28. A newly identified 9.71 MeV 0+ state is a strong candidate for the bandhead of the previously discussed superdeformed band. The multichannel dynamical symmetry of the semimicroscopic algebraic model predicts the spectrum of the excited 0+ states. The theoretical prediction is in good agreement with the experimental finding, supporting the assignment of the 9.71-MeV state as the bandhead of a superdeformed band. Conclusion: Excited isoscalar 0+ states in Si28 have been identified. The number of states observed in the present experiment shows good agreement with the prediction of the multichannel dynamical symmetry
The 20Ne(d,p)21Ne transfer reaction in relation to the s-process abundances
A study of the 20Ne(d,p)21Ne transfer reaction was performed using the Quadrupole Dipole Dipole Dipole (Q3D) magnetic spectrograph in Garching, Germany. The experiment probed excitation energies in 21Ne ranging from 6.9 MeV to 8.5 MeV. The aim was to investigate the spectroscopic information of 21Ne within the Gamow window of core helium burning in massive stars. Further information in this region will help reduce the uncertainties on the extrapolation down to Gamow window cross sections of the 17O(α,γ)21Ne reaction. In low metallicity stars, this reaction has a direct impact on s-process abundances by determining the fate of 16O as either a neutron poison or a neutron absorber. The experiment used a 22-MeV deuteron beam, with intensities varying from 0.5-1 μA, and an implanted target of 20Ne of 7 μg/cm2 in 40 μg/cm2 carbon foils. Sixteen 21Ne peaks have been identified in the Ex = 6.9-8.5 MeV range, of which only thirteen peaks correspond to known states. Only the previously-known Ex = 7.960 MeV state was observed within the Gamow window
Sub-barrier fusion cross section measurements with STELLA
The experimental setup STELLA (STELlar LAboratory) is designed for the measurement of deep sub-barrier light heavy ion fusion cross sections. For background suppression the γ-particle coincidence technique is used. In this project, LaBr3 detectors from the UK FATIMA (FAst TIMing Array) collaboration are combined with annular silicon strip detectors customized at IPHC-CNRS, Strasbourg, and the setup is located at Andromède, IPN, Orsay. The commissioning of the experimental approach as well as a sub-barrier 12C +12C → 24Mg∗ cross section measurement campaign are carried out
Study of the 26Al(n,p)26Mg and 26Al(n,α)23Na reactions using the 27Al(p,p')27Al inelastic scattering reaction
26Al was the first cosmic radioactivity ever detected in the galaxy as well as one of the first extinct radioactivity observed in refractory phases of meteorites. Its nucleosynthesis in massive stars is still uncertain mainly due to the lack of nuclear information concerning the 26Al(n,p)26Mg and 26 Al(n,α)23Na reactions. We report on a single and coincidence measurement of the 27Al(p,p')27Al(p)26Mg and 27Al(p,p')27Al(α)23Na reactions performed at the Orsay TANDEM facility aiming at the spectroscopy study of 27Al above the neutron threshold. Fourteen states are observed for the first time within 350 keV above the 26Al+n threshold
Народная культура и традиции
CITATION: Donaldson, L. M., et al. 2018. Deformation dependence of the isovector giant dipole resonance : theneodymium isotopic chain revisited. Physics Letters B, 776:133-138, doi:10.1016/j.physletb.2017.11.025.The original publication is available at https://www.sciencedirect.comProton inelastic scattering experiments at energy Ep=200MeV and a spectrometer scattering angle of 0° were performed on 144,146,148,150Nd and 152Sm exciting the IsoVector Giant Dipole Resonance (IVGDR). Comparison with results from photo-absorption experiments reveals a shift of resonance maxima towards higher energies for vibrational and transitional nuclei. The extracted photo-absorption cross sections in the most deformed nuclei, 150Nd and 152Sm, exhibit a pronounced asymmetry rather than a distinct double-hump structure expected as a signature of K-splitting. This behaviour may be related to the proximity of these nuclei to the critical point of the phase shape transition from vibrators to rotors with a soft quadrupole deformation potential. Self-consistent random-phase approximation (RPA) calculations using the SLy6 Skyrme force provide a relevant description of the IVGDR shapes deduced from the present data.https://www.sciencedirect.com/science/article/pii/S0370269317309176Publisher's versio
Extending the Hoyle-State Paradigm to 12 C + 12 C Fusion
Carbon burning is a key step in the evolution of massive stars, Type 1a supernovae and superbursts in
x-ray binary systems. Determining the 12C þ 12C fusion cross section at relevant energies by extrapolation
of direct measurements is challenging due to resonances at and below the Coulomb barrier. A study of the
24Mgðα; α0Þ24Mg reaction has identified several 0þ states in 24Mg, close to the 12C þ 12C threshold, which
predominantly decay to 20Neðground stateÞ þ α. These states were not observed in 20Neðα; α0
Þ20Ne
resonance scattering suggesting that they may have a dominant 12C þ 12C cluster structure. Given the
very low angular momentum associated with sub-barrier fusion, these states may play a decisive role
in 12C þ 12C fusion in analogy to the Hoyle state in helium burning. We present estimates of updated
12C þ 12C fusion reaction rates
- …
