379 research outputs found
Tunable control of the bandwidth and frequency correlations of entangled photons
We demonstrate experimentally a new technique to control the bandwidth and
the type of frequency correlations (correlation, anticorrelation, and even
uncorrelation) of entangled photons generated by spontaneous parametric
downconversion. The method is based on the control of the group velocities of
the interacting waves. This technique can be applied in any nonlinear medium
and frequency band of interest. It is also demonstrated that this technique
helps enhance the quality of polarization entanglement even when femtosecond
pulses are used as a pump.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let
Shaping the waveform of entangled photons
We demonstrate experimentally the tunable control of the joint spectrum, i.e.
waveform and degree of frequency correlations, of paired photons generated in
spontaneous parametric downconversion. This control is mediated by the spatial
shape of the pump beam in a type-I noncollinear configuration. We discuss the
applicability of this technique to other sources of frequency entangled
photons, such as electromagnetically induced Raman transitions.Comment: 5 Pages, 4 Figure
Subnanosecond spectral diffusion measurement using photon correlation
Spectral diffusion is a result of random spectral jumps of a narrow line as a
result of a fluctuating environment. It is an important issue in spectroscopy,
because the observed spectral broadening prevents access to the intrinsic line
properties. However, its characteristic parameters provide local information on
the environment of a light emitter embedded in a solid matrix, or moving within
a fluid, leading to numerous applications in physics and biology. We present a
new experimental technique for measuring spectral diffusion based on photon
correlations within a spectral line. Autocorrelation on half of the line and
cross-correlation between the two halves give a quantitative value of the
spectral diffusion time, with a resolution only limited by the correlation
set-up. We have measured spectral diffusion of the photoluminescence of a
single light emitter with a time resolution of 90 ps, exceeding by four orders
of magnitude the best resolution reported to date
Single-qubit optical quantum fingerprinting
We analyze and demonstrate the feasibility and superiority of linear optical
single-qubit fingerprinting over its classical counterpart. For one-qubit
fingerprinting of two-bit messages, we prepare `tetrahedral' qubit states
experimentally and show that they meet the requirements for quantum
fingerprinting to exceed the classical capability. We prove that shared
entanglement permits 100% reliable quantum fingerprinting, which will
outperform classical fingerprinting even with arbitrary amounts of shared
randomness.Comment: 4 pages, one figur
An ultra-sensitive pulsed balanced homodyne detector: Application to time-domain quantum measurements
A pulsed balanced homodyne detector has been developed for precise
measurements of electric field quadratures of pulsed optical quantum states. A
high level of common mode suppression (> 85 dB) and low electronic noise (730
electrons per pulse) provide a signal to noise ratio of 14 dB for the
measurement of the quantum noise of individual pulses. Measurements at
repetition rates up to 1 MHz are possible. As a test, quantum tomography of the
coherent state is performed and the Wigner function and the density matrix are
reconstructed with a 99.5% fidelity. The detection system can also be used for
ultrasensitive balanced detection in cw mode, e.g. for weak absorption
measurements.Comment: 3 pages, submitted to Optics Letter
Efficient single-photon emission from electrically driven InP quantum dots epitaxially grown on Si(001)
The heteroepitaxy of III-V semiconductors on silicon is a promising approach
for making silicon a photonic platform for on-chip optical interconnects and
quantum optical applications. Monolithic integration of both material systems
is a long-time challenge, since different material properties lead to high
defect densities in the epitaxial layers. In recent years, nanostructures
however have shown to be suitable for successfully realising light emitters on
silicon, taking advantage of their geometry. Facet edges and sidewalls can
minimise or eliminate the formation of dislocations, and due to the reduced
contact area, nanostructures are little affected by dislocation networks. Here
we demonstrate the potential of indium phosphide quantum dots as efficient
light emitters on CMOS-compatible silicon substrates, with luminescence
characteristics comparable to mature devices realised on III-V substrates. For
the first time, electrically driven single-photon emission on silicon is
presented, meeting the wavelength range of silicon avalanche photo diodes'
highest detection efficiency
- …
