799 research outputs found
Testing and comparing conditional CAPM with a new approach in the cross-sectional framework
This study examines the conditional relationship between beta and return for stocks traded on S&P 500 for the period from July 2001 to June 2011. The portfolios formed based on the Book value per share and betas using monthly data. A novel approach for capturing time variation in betas whose pattern is treated as a function of market returns is developed and presented. The estimated coefficients of a nonlinear regression constitute the basis of creating a two factor model. Our results indicate that the proposed specification outperforms alternative models in explaining the cross-section of returns
Cross-sectional conditional risk return analysis in the sorted beta framework: A novel Two Factor Model
This study examines the conditional relationship between beta and return for stocks traded on S&P 500 for the period from July 2001 to June 2011. The portfolios formed based on the Book value per share and betas using monthly data. A novel approach for capturing time variation in betas whose pattern is treated as a function of market returns is developed and presented. The estimated coefficients of a nonlinear regression constitute the basis of creating a two factor model. Our results indicate that the proposed specification surpasses alternative models in explaining the cross-section of returns
Recommended from our members
Does firing a CEO pay off?
We examine whether involuntary CEO replacements pay off by improving firm prospects. We find CEO successors’ acquisition investments to be associated with significantly higher shareholder gains relative to their predecessors and the average CEO. This improvement in post-turnover acquisition performance appears to be a function of board independence, hedge fund ownership, and the new CEO’s relative experience. CEO successors also create sizeable shareholder value by reversing prior investments through asset disposals and discontinuing operations and by employing more efficient investment strategies. Our evidence suggests that firing a CEO pays off
Quantitative description of temperature induced self-aggregation thermograms determined by differential scanning calorimetry
A novel thermodynamic approach for the description of differential scanning calorimetry (DSC) experiments on self-aggregating systems is derived and presented. The method is based on a mass action model where temperature dependence of aggregation numbers is considered. The validity of the model was confirmed by describing the aggregation behavior of poly(ethylene oxide)-poly(propylene oxide) block copolymers, which are well-known to exhibit a strong temperature dependence. The quantitative description of the thermograms could be performed without any discrepancy between calorimetric and van 't Hoff enthalpies, and moreover, the aggregation numbers obtained from the best fit of the DSC experiments are in good agreement with those obtained by light scattering experiments corroborating the assumptions done in the derivation of the new model
Structure of nanoparticles embedded in micellar polycrystals
We investigate by scattering techniques the structure of water-based soft
composite materials comprising a crystal made of Pluronic block-copolymer
micelles arranged in a face-centered cubic lattice and a small amount (at most
2% by volume) of silica nanoparticles, of size comparable to that of the
micelles. The copolymer is thermosensitive: it is hydrophilic and fully
dissolved in water at low temperature (T ~ 0{\deg}C), and self-assembles into
micelles at room temperature, where the block-copolymer is amphiphilic. We use
contrast matching small-angle neuron scattering experiments to probe
independently the structure of the nanoparticles and that of the polymer. We
find that the nanoparticles do not perturb the crystalline order. In addition,
a structure peak is measured for the silica nanoparticles dispersed in the
polycrystalline samples. This implies that the samples are spatially
heterogeneous and comprise, without macroscopic phase separation, silica-poor
and silica-rich regions. We show that the nanoparticle concentration in the
silica-rich regions is about tenfold the average concentration. These regions
are grain boundaries between crystallites, where nanoparticles concentrate, as
shown by static light scattering and by light microscopy imaging of the
samples. We show that the temperature rate at which the sample is prepared
strongly influence the segregation of the nanoparticles in the
grain-boundaries.Comment: accepted for publication in Langmui
Re-structuring of marine communities exposed to environmental change
Species richness is the most commonly used but controversial biodiversity metric in studies on aspects of community stability such as structural composition or productivity. The apparent ambiguity of theoretical and experimental findings may in part be due to experimental shortcomings and/or heterogeneity of scales and methods in earlier studies. This has led to an urgent call for improved and more realistic experiments. In a series of experiments replicated at a global scale we translocated several hundred marine hard bottom communities to new environments simulating a rapid but moderate environmental change. Subsequently, we measured their rate of compositional change (re-structuring) which in the great majority of cases represented a compositional convergence towards local communities. Re-structuring is driven by mortality of community components (original species) and establishment of new species in the changed environmental context. The rate of this re-structuring was then related to various system properties. We show that availability of free substratum relates negatively while taxon richness relates positively to structural persistence (i.e., no or slow re-structuring). Thus, when faced with environmental change, taxon-rich communities retain their original composition longer than taxon-poor communities. The effect of taxon richness, however, interacts with another aspect of diversity, functional richness. Indeed, taxon richness relates positively to persistence in functionally depauperate communities, but not in functionally diverse communities. The interaction between taxonomic and functional diversity with regard to the behaviour of communities exposed to environmental stress may help understand some of the seemingly contrasting findings of past research
Adsorption of F127 onto Single-Walled Carbon Nanotubes Characterized Using Small-Angle Neutron Scattering
Towards generalized measures grasping CA dynamics
In this paper we conceive Lyapunov exponents, measuring the rate of separation between two initially close configurations, and Jacobians, expressing the sensitivity of a CA's transition function to its inputs, for cellular automata (CA) based upon irregular tessellations of the n-dimensional Euclidean space. Further, we establish a relationship between both that enables us to derive a mean-field approximation of the upper bound of an irregular CA's maximum Lyapunov exponent. The soundness and usability of these measures is illustrated for a family of 2-state irregular totalistic CA
Degradation versus self-assembly of block copolymer micelles
The stability of micelles self-assembled from block copolymers can be altered
by the degradation of the blocks. Slow degradation shifts the equilibrium size
distribution of block copolymer micelles and change their properties.
Quasi-equilibrium scaling theory shows that the degradation of hydrophobic
blocks in the core of micelles destabilize the micelles reducing their size,
while the degradation of hydrophilic blocks forming coronas of micelles favors
larger micelles and may, at certain conditions, induce the formation of
micelles from individual chains.Comment: Published in Langmuir http://pubs.acs.org/doi/pdf/10.1021/la204625
- …
