4,469 research outputs found

    Grundfos: Chlorination of Swimming Pools

    Get PDF
    In this report a model is developed for describing the mixing of chemicals in water systems. We construct a three-variable ODE system describing the concentration of chlorine, bacteria, and organic molecules. We show that a pump strategy is effective in regulating the chlorine concentration

    An electrooptical muscle contraction sensor

    Get PDF
    An electrooptical sensor for the detection of muscle contraction is described. Infrared light is injected into the muscle, the backscattering is observed, and the contraction is detected by measuring the change, that occurs during muscle contraction, between the light scattered in the direction parallel and perpendicular to the muscle cells. With respect to electromyography and to optical absorption-based sensors, our device has the advantage of lower invasiveness, of lower sensitivity to electromagnetic noise and to movement artifacts, and of being able to distinguish between isometric and isotonic contractions

    Identifying component modules

    Get PDF
    A computer-based system for modelling component dependencies and identifying component modules is presented. A variation of the Dependency Structure Matrix (DSM) representation was used to model component dependencies. The system utilises a two-stage approach towards facilitating the identification of a hierarchical modular structure. The first stage calculates a value for a clustering criterion that may be used to group component dependencies together. A Genetic Algorithm is described to optimise the order of the components within the DSM with the focus of minimising the value of the clustering criterion to identify the most significant component groupings (modules) within the product structure. The second stage utilises a 'Module Strength Indicator' (MSI) function to determine a value representative of the degree of modularity of the component groupings. The application of this function to the DSM produces a 'Module Structure Matrix' (MSM) depicting the relative modularity of available component groupings within it. The approach enabled the identification of hierarchical modularity in the product structure without the requirement for any additional domain specific knowledge within the system. The system supports design by providing mechanisms to explicitly represent and utilise component and dependency knowledge to facilitate the nontrivial task of determining near-optimal component modules and representing product modularity

    Cepheid Mass-loss and the Pulsation -- Evolutionary Mass Discrepancy

    Full text link
    I investigate the discrepancy between the evolution and pulsation masses for Cepheid variables. A number of recent works have proposed that non-canonical mass-loss can account for the mass discrepancy. This mass-loss would be such that a 5Mo star loses approximately 20% of its mass by arriving at the Cepheid instability strip; a 14Mo star, none. Such findings would pose a serious challenge to our understanding of mass-loss. I revisit these results in light of the Padova stellar evolutionary models and find evolutionary masses are (17±517\pm5)% greater than pulsation masses for Cepheids between 5<M/Mo<14. I find that mild internal mixing in the main-sequence progenitor of the Cepheid are able to account for this mass discrepancy.Comment: 15 pages, 3 figures, ApJ accepte

    Differential electrophysiological response during rest, self-referential, and non-self-referential tasks in human posteromedial cortex

    Get PDF
    The electrophysiological basis for higher brain activity during rest and internally directed cognition within the human default mode network (DMN) remains largely unknown. Here we use intracranial recordings in the human posteromedial cortex (PMC), a core node within the DMN, during conditions of cued rest, autobiographical judgments, and arithmetic processing. We found a heterogeneous profile of PMC responses in functional, spatial, and temporal domains. Although the majority of PMC sites showed increased broad gamma band activity (30-180 Hz) during rest, some PMC sites, proximal to the retrosplenial cortex, responded selectively to autobiographical stimuli. However, no site responded to both conditions, even though they were located within the boundaries of the DMN identified with resting-state functional imaging and similarly deactivated during arithmetic processing. These findings, which provide electrophysiological evidence for heterogeneity within the core of the DMN, will have important implications for neuroimaging studies of the DMN

    Mixing in the Solar Nebula: Implications for Isotopic Heterogeneity and Large-Scale Transport of Refractory Grains

    Full text link
    The discovery of refractory grains amongst the particles collected from Comet 81P/Wild 2 by the Stardust spacecraft (Brownlee et al. 2006) provides the ground truth for large-scale transport of materials formed in high temperature regions close to the protosun outward to the comet-forming regions of the solar nebula. While accretion disk models driven by a generic turbulent viscosity have been invoked as a means to explain such large-scale transport, the detailed physics behind such an ``alpha'' viscosity remains unclear. We present here an alternative physical mechanism for large-scale transport in the solar nebula: gravitational torques associated with the transient spiral arms in a marginally gravitationally unstable disk, of the type that appears to be necessary to form gas giant planets. Three dimensional models are presented of the time evolution of self-gravitating disks, including radiative transfer and detailed equations of state, showing that small dust grains will be transported upstream and downstream (with respect to the mean inward flow of gas and dust being accreted by the central protostar) inside the disk on time scales of less than 1000 yr inside 10 AU. These models furthermore show that any initial spatial heterogeneities present (e.g., in short-lived isotopes such as 26Al) will be homogenized by disk mixing down to a level of ~10%, preserving the use of short-lived isotopes as accurate nebular chronometers, while simultaneously allowing for the spread of stable oxygen isotope ratios. This finite level of nebular spatial heterogeneity appears to be related to the coarse mixing achieved by spiral arms, with radial widths of order 1 AU, over time scales of ~1000 yrs.Comment: 22 pages, 10 figures. Earth & Planetary Science Letters, accepte

    Urbanization and transformation of agri-food system: Opportunities for organic producers in developing countries

    Get PDF
    Developing countries especially in Sub-Saharan Africa are pronominally agricultural based. Where the majority of the population resides in rural areas and engaged in agriculture as a source of livelihood. However, recently there has been a growing debate globally on rapid urban population growth in developing countries. The aim of this paper is to present opportunities for organic producers emanating from transformations of agri-food systems in urban area. The paper is based on research activities of a project ‘Productivity and Growth in Organic Value Chains (ProGrOV)’. ProGrOV is collaboration between universities in Uganda, Kenya, Tanzania and Denmark addressing the need for sustainable development of smallholder farming systems in East Africa with focus on value chains for local high-value markets as well as export chains. The project addresses innovations for improving production as well as market access. The transformations of agri-food systems addressed in this paper resulting from urbanization are evidenced by proliferation of supermarkets, specialized organic-food shops, food supply to tourist industry and traditional farmer markets. Efforts for promoting organic products in East Africa have traditionally focused on export markets this paper based on evidence from ProGrOV studies argue that there is opportunity for developing domestic organic product value chains to meet the demand from urban population growth and transformed agri-food systems

    Analysis of symmetries in models of multi-strain infections

    Get PDF
    In mathematical studies of the dynamics of multi-strain diseases caused by antigenically diverse pathogens, there is a substantial interest in analytical insights. Using the example of a generic model of multi-strain diseases with cross-immunity between strains, we show that a significant understanding of the stability of steady states and possible dynamical behaviours can be achieved when the symmetry of interactions between strains is taken into account. Techniques of equivariant bifurcation theory allow one to identify the type of possible symmetry-breaking Hopf bifurcation, as well as to classify different periodic solutions in terms of their spatial and temporal symmetries. The approach is also illustrated on other models of multi-strain diseases, where the same methodology provides a systematic understanding of bifurcation scenarios and periodic behaviours. The results of the analysis are quite generic, and have wider implications for understanding the dynamics of a large class of models of multi-strain diseases
    corecore