896 research outputs found

    On the ternary complex analysis and its applications

    Full text link
    Previouly a possible extension of the complex number, together with its connected trigonometry was introduced. In this paper we focuss on the simplest case of ternary complex numbers. Then, some types of holomorphicity adapted to the ternary complex numbers and the corresponding results upon integration of differential forms are given. Several physical applications are given, and in particuler one type of holomorphic function gives rise to a new form of stationary magnetic field. The movement of a monopole type object in this field is then studied and shown to be integrable. The monopole scattering in the ternary field is finally studied.Comment: LaTeX 28 page

    Continuously Crossing u=z in the H3+ Boundary CFT

    Full text link
    For AdS boundary conditions, we give a solution of the H3+ two point function involving degenerate field with SL(2)-label b^{-2}/2, which is defined on the full (u,z) unit square. It consists of two patches, one for z<u and one for u<z. Along the u=z "singularity", the solutions from both patches are shown to have finite limits and are merged continuously as suggested by the work of Hosomichi and Ribault. From this two point function, we can derive b^{-2}/2-shift equations for AdS_2 D-branes. We show that discrete as well as continuous AdS_2 branes are consistent with our novel shift equations without any new restrictions.Comment: version to appear in JHEP - 12 pages now; sign error with impact on some parts of the interpretation fixed; material added to become more self-contained; role of bulk-boundary OPE in section 4 more carefully discussed; 3 references adde

    A Generalization of Chetaev's Principle for a Class of Higher Order Non-holonomic Constraints

    Get PDF
    The constraint distribution in non-holonomic mechanics has a double role. On one hand, it is a kinematic constraint, that is, it is a restriction on the motion itself. On the other hand, it is also a restriction on the allowed variations when using D'Alembert's Principle to derive the equations of motion. We will show that many systems of physical interest where D'Alembert's Principle does not apply can be conveniently modeled within the general idea of the Principle of Virtual Work by the introduction of both kinematic constraints and variational constraints as being independent entities. This includes, for example, elastic rolling bodies and pneumatic tires. Also, D'Alembert's Principle and Chetaev's Principle fall into this scheme. We emphasize the geometric point of view, avoiding the use of local coordinates, which is the appropriate setting for dealing with questions of global nature, like reduction.Comment: 27 pages. Journal of Mathematical Physics (to zappear

    Geodesics around Weyl-Bach's Ring Solution

    Full text link
    We explore some of the gravitational features of a uniform ring both in the Newtonian potential theory and in General Relativity. We use a spacetime associated to a Weyl static solution of the vacuum Einstein's equations with ring like singularity. The Newtonian motion for a test particle in the gravitational field of the ring is studied and compared with the corresponding geodesic motion in the given spacetime. We have found a relativistic peculiar attraction: free falling particle geodesics are lead to the inner rim but never hit the ring.Comment: 8 figures, 14 pages. LaTeX w/ subfigure, graphic

    A massive Feynman integral and some reduction relations for Appell functions

    Full text link
    New explicit expressions are derived for the one-loop two-point Feynman integral with arbitrary external momentum and masses m12m_1^2 and m22m_2^2 in D dimensions. The results are given in terms of Appell functions, manifestly symmetric with respect to the masses mi2m_i^2. Equating our expressions with previously known results in terms of Gauss hypergeometric functions yields reduction relations for the involved Appell functions that are apparently new mathematical results.Comment: 19 pages. To appear in Journal of Mathematical Physic

    On hypergeometric series reductions from integral representations, the Kampe de Feriet function, and elsewhere

    Full text link
    Single variable hypergeometric functions pFq arise in connection with the power series solution of the Schrodinger equation or in the summation of perturbation expansions in quantum mechanics. For these applications, it is of interest to obtain analytic expressions, and we present the reduction of a number of cases of pFp and p+1F_p, mainly for p=2 and p=3. These and related series have additional applications in quantum and statistical physics and chemistry.Comment: 17 pages, no figure

    Second-order second-degree Painleve equations related with Painleve I-IV equations and Fuchsian-type transformations

    Get PDF
    Cataloged from PDF version of article.One-to-one correspondence between the Painlevé I-VI equations and certain second-order second-degree equations of Painlevé type is investigated. The transformation between the Painlevé equations and second-order second-degree equations is the one involving the Fuchsian-type equation. © 1999 American Institute of Physics

    Integral representations of q-analogues of the Hurwitz zeta function

    Full text link
    Two integral representations of q-analogues of the Hurwitz zeta function are established. Each integral representation allows us to obtain an analytic continuation including also a full description of poles and special values at non-positive integers of the q-analogue of the Hurwitz zeta function, and to study the classical limit of this q-analogue. All the discussion developed here is entirely different from the previous work in [4]Comment: 14 page

    Multi-Dimensional Hermite Polynomials in Quantum Optics

    Full text link
    We study a class of optical circuits with vacuum input states consisting of Gaussian sources without coherent displacements such as down-converters and squeezers, together with detectors and passive interferometry (beam-splitters, polarisation rotations, phase-shifters etc.). We show that the outgoing state leaving the optical circuit can be expressed in terms of so-called multi-dimensional Hermite polynomials and give their recursion and orthogonality relations. We show how quantum teleportation of photon polarisation can be modelled using this description.Comment: 10 pages, submitted to J. Phys. A, removed spurious fil

    On the Equivalence Between Type I Liouville Dynamical Systems in the Plane and the Sphere

    Get PDF
    Producción CientíficaSeparable Hamiltonian systems either in sphero-conical coordinates on an S2 sphere or in elliptic coordinates on a R2 plane are described in a unified way. A back and forth route connecting these Liouville Type I separable systems is unveiled. It is shown how the gnomonic projection and its inverse map allow us to pass from a Liouville Type I separable system with a spherical configuration space to its Liouville Type I partners where the configuration space is a plane and back. Several selected spherical separable systems and their planar cousins are discussed in a classical context
    corecore