13,129 research outputs found
A Hardy's Uncertainty Principle Lemma in Weak Commutation Relations of Heisenberg-Lie Algebra
In this article we consider linear operators satisfying a generalized
commutation relation of a type of the Heisenberg-Lie algebra. It is proven that
a generalized inequality of the Hardy's uncertainty principle lemma follows.
Its applications to time operators and abstract Dirac operators are also
investigated
Meta-stable Vacuum in Spontaneously Broken N=2 Supersymmetric Gauge Theory
We consider an N=2 supersymmetric SU(2) \times U(1) gauge theory with N_f=2
massless flavors and a Fayet-Iliopoulos (FI) term. In the presence of the FI
term, supersymmetry is spontaneously broken at tree level (on the Coulomb
branch), leaving a pseudo-flat direction in the classical potential. This
vacuum degeneracy is removed once quantum corrections are taken into account.
Due to the SU(2) gauge dynamics, the effective potential exhibits a local
minimum at the dyon point, where not only supersymmetry but also U(1)_R
symmetry is broken, while a supersymmetric vacuum would be realized toward
infinity with the runaway behavior of the potential. This local minimum is
found to be parametrically long-lived. Interestingly, from a phenomenological
point of view, in this meta-stable vacuum the massive hypermultiplets inherent
in the theory play the role of the messenger fields in the gauge mediation
scenario, when the Standard Model gauge group is embedded into their flavor
symmetry.Comment: 27 pages, 11 figures, journal reference added, minor modifications in
the tex
Upper limit to in scalar-tensor gravity theories
In a previous paper (Serna & Alimi 1996), we have pointed out the existence
of some particular scalar-tensor gravity theories able to relax the
nucleosynthesis constraint on the cosmic baryonic density. In this paper, we
present an exhaustive study of primordial nucleosynthesis in the framework of
such theories taking into account the currently adopted observational
constraints. We show that a wide class of them allows for a baryonic density
very close to that needed for the universe closure. This class of theories
converges soon enough towards General Relativity and, hence, is compatible with
all solar-system and binary pulsar gravitational tests. In other words, we show
that primordial nucleosynthesis does not always impose a very stringent bound
on the baryon contribution to the density parameter.Comment: uuencoded tar-file containing 16 pages, latex with 5 figures,
accepted for publication in Astrophysical Journal (Part 1
Electronic properties of the novel 4d metallic oxide SrRhO3
The novel 4d perovskite compound SrRhO3 was investigated by isovalent doping
studies. The solubility limits of Ca and Ba onto Sr-site were below 80% and
20%, respectively. Although SrRhO3 was chemically compressed, approximately
5.7% by the Ca doping, no significant influence was observed on the magnetic
and electrical properties.Comment: To be published in a special issue of Physica B (the proceedings of
LT23
NaV2O4: a Quasi-1D Metallic Antiferromagnet with Half-Metallic Chains
NaV2O4 crystals were grown under high pressure using a NaCl flux, and the
crystals were characterized with X-ray diffraction, electrical resistivity,
heat capacity, and magnetization. The structure of NaV2O4 consists of double
chains of edge-sharing VO6 octahedra. The resistivity is highly anisotropic,
with the resistivity perpendicular to the chains more than 20 times greater
than that parallel to the chains. Magnetically, the intrachain interactions are
ferromagnetic and the interchain interactions are antiferromagnetic; 3D
antiferromagnetic order is established at 140 K. First principles electronic
structure calculations indicate that the chains are half metallic.
Interestingly, the case of NaV2O4 seems to be a quasi-1D analogue of what was
found for half-metallic materials.Comment: 14 pages, including 4 figures and 1 table, accepted for publication
in PR
Magnetic-Field Dependences of Thermodynamic Quantities in the Vortex State of Type-II Superconductors
We develop an alternative method to solve the Eilenberger equations
numerically for the vortex-lattice states of type-II superconductors. Using it,
we clarify the magnetic-field and impurity-concentration dependences of the
magnetization, the entropy, the Pauli paramagnetism, and the mixing of higher
Landau levels in the pair potential for two-dimensional - and
-wave superconductors with the cylindrical Fermi surface.Comment: 8 pages, 6 figure
Fermi Surface and Anisotropic Spin-Orbit Coupling of Sb(111) studied by Angle-Resolved Photoemission Spectroscopy
High-resolution angle-resolved photoemission spectroscopy has been performed
on Sb(111) to elucidate the origin of anomalous electronic properties in
group-V semimetal surfaces. The surface was found to be metallic despite the
semimetallic character of bulk. We clearly observed two surface-derived Fermi
surfaces which are likely spin split, demonstrating that the spin-orbit
interaction plays a dominant role in characterising the surface electronic
states of group-V semimetals. Universality/disimilarity of the electronic
structure in Bi and Sb is discussed in relation to the granular
superconductivity, electron-phonon coupling, and surface charge/spin density
wave.Comment: 4 pages, 3 figures. to be published in Phys. Rev. Let
Collective dynamical response of coupled oscillators with any network structure
We formulate a reduction theory that describes the response of an oscillator
network as a whole to external forcing applied nonuniformly to its constituent
oscillators. The phase description of multiple oscillator networks coupled
weakly is also developed. General formulae for the collective phase sensitivity
and the effective phase coupling between the oscillator networks are found. Our
theory is applicable to a wide variety of oscillator networks undergoing
frequency synchronization. Any network structure can systematically be treated.
A few examples are given to illustrate our theory.Comment: 4 pages, 2 figure
Preface Results of the open session on "Documentation and monitoring of landslides and debris flows" for mathematical modelling and design of mitigation measures, held at the EGU General Assembly 2009
The papers that are here presented and summarised represent the recent scientific contributions of some authors coming from different countries and working in the fields of monitoring, modelling, mapping and design of mitigation measures against mass movements. The authors had the opportunity to present their recent advancements, discuss each other needs and set forth future research requirements during the 2009 EGU General Assembly, so that their scientific contributions can be considered the result of the debates and exchanges that were set among scientists and researchers, either personally or during the review phase since that date. In this resume, the scientific papers of the special issue are divided according to different thematic areas and summarised. The most innovative scientific approaches proposed in the special issue, regarding the monitoring methodologies, simulation techniques and laboratory equipment are described and summarised. The obtained results are very promising to keep on future research at a very satisfactory level
- …
