1,479 research outputs found
Zero-Shot Deep Domain Adaptation
Domain adaptation is an important tool to transfer knowledge about a task
(e.g. classification) learned in a source domain to a second, or target domain.
Current approaches assume that task-relevant target-domain data is available
during training. We demonstrate how to perform domain adaptation when no such
task-relevant target-domain data is available. To tackle this issue, we propose
zero-shot deep domain adaptation (ZDDA), which uses privileged information from
task-irrelevant dual-domain pairs. ZDDA learns a source-domain representation
which is not only tailored for the task of interest but also close to the
target-domain representation. Therefore, the source-domain task of interest
solution (e.g. a classifier for classification tasks) which is jointly trained
with the source-domain representation can be applicable to both the source and
target representations. Using the MNIST, Fashion-MNIST, NIST, EMNIST, and SUN
RGB-D datasets, we show that ZDDA can perform domain adaptation in
classification tasks without access to task-relevant target-domain training
data. We also extend ZDDA to perform sensor fusion in the SUN RGB-D scene
classification task by simulating task-relevant target-domain representations
with task-relevant source-domain data. To the best of our knowledge, ZDDA is
the first domain adaptation and sensor fusion method which requires no
task-relevant target-domain data. The underlying principle is not particular to
computer vision data, but should be extensible to other domains.Comment: This paper is accepted to the European Conference on Computer Vision
(ECCV), 201
Object Contour and Edge Detection with RefineContourNet
A ResNet-based multi-path refinement CNN is used for object contour
detection. For this task, we prioritise the effective utilization of the
high-level abstraction capability of a ResNet, which leads to state-of-the-art
results for edge detection. Keeping our focus in mind, we fuse the high, mid
and low-level features in that specific order, which differs from many other
approaches. It uses the tensor with the highest-levelled features as the
starting point to combine it layer-by-layer with features of a lower
abstraction level until it reaches the lowest level. We train this network on a
modified PASCAL VOC 2012 dataset for object contour detection and evaluate on a
refined PASCAL-val dataset reaching an excellent performance and an Optimal
Dataset Scale (ODS) of 0.752. Furthermore, by fine-training on the BSDS500
dataset we reach state-of-the-art results for edge-detection with an ODS of
0.824.Comment: Keywords: Object Contour Detection, Edge Detection, Multi-Path
Refinement CN
Anatomically Constrained Video-CT Registration via the V-IMLOP Algorithm
Functional endoscopic sinus surgery (FESS) is a surgical procedure used to
treat acute cases of sinusitis and other sinus diseases. FESS is fast becoming
the preferred choice of treatment due to its minimally invasive nature.
However, due to the limited field of view of the endoscope, surgeons rely on
navigation systems to guide them within the nasal cavity. State of the art
navigation systems report registration accuracy of over 1mm, which is large
compared to the size of the nasal airways. We present an anatomically
constrained video-CT registration algorithm that incorporates multiple video
features. Our algorithm is robust in the presence of outliers. We also test our
algorithm on simulated and in-vivo data, and test its accuracy against
degrading initializations.Comment: 8 pages, 4 figures, MICCA
Runtime Distributions and Criteria for Restarts
Randomized algorithms sometimes employ a restart strategy. After a certain
number of steps, the current computation is aborted and restarted with a new,
independent random seed. In some cases, this results in an improved overall
expected runtime. This work introduces properties of the underlying runtime
distribution which determine whether restarts are advantageous. The most
commonly used probability distributions admit the use of a scale and a location
parameter. Location parameters shift the density function to the right, while
scale parameters affect the spread of the distribution. It is shown that for
all distributions scale parameters do not influence the usefulness of restarts
and that location parameters only have a limited influence. This result
simplifies the analysis of the usefulness of restarts. The most important
runtime probability distributions are the log-normal, the Weibull, and the
Pareto distribution. In this work, these distributions are analyzed for the
usefulness of restarts. Secondly, a condition for the optimal restart time (if
it exists) is provided. The log-normal, the Weibull, and the generalized Pareto
distribution are analyzed in this respect. Moreover, it is shown that the
optimal restart time is also not influenced by scale parameters and that the
influence of location parameters is only linear
A note using mergers and acquisitions to gain competitive advantage in the United States in the case of Latin American MNCs
Author's OriginalThe "new" economic and business climate in Latin America, fostered by multilateral trade agreements such as NAFTA, MERCOSUR, and the ANDEAN Pact, suggests that Latin American (LA) firms must become more aggressive and competitive in order to survive. Foreign direct investment in the form of mergers and acquisitions (M&A) is often an effective way of competing in a tough global environment. Using transactions data collected from Security Data Company's Worldwide Merger and Acquisition database, this paper analyzes the relative involvement of firms from five LA countries (Argentina, Brazil, Chile, Mexico, and Venezuela) in acquiring targets in the United States of America. Transaction characteristics examined and summarized include the annual distribution (1985-1998) of the deals, the industrial sector of the target firm, the form of acquisition method used, and the form of ownership of the target firm. The trends are analyzed, and implications for managers are indicated.Milman, C. D., D’Mello, J. P., Aybar, B., & Arbaláez, H. (2001). A note using mergers and
acquisitions to gain competitive advantage in the United States in the case of Latin American MNCs.
International Review of Financial Analysis, 10(3), 323-332. doi:10.1016/S1057-5219(01)00056-
Climbing: A Unified Approach for Global Constraints on Hierarchical Segmentation
International audienceThe paper deals with global constraints for hierarchical segmentations. The proposed framework associates, with an input image, a hierarchy of segmentations and an energy, and the subsequent optimization problem. It is the first paper that compiles the different global constraints and unifies them as Climbing energies. The transition from global optimization to local optimization is attained by the h-increasingness property, which allows to compare parent and child partition energies in hierarchies. The laws of composition of such energies are established and examples are given over the Berkeley Dataset for colour and texture segmentation
Statistical Gaussian Model of Image Regions in Stochastic Watershed Segmentation
International audienceStochastic watershed is an image segmentation technique based on mathematical morphology which produces a probability density function of image contours. Estimated probabilities depend mainly on local distances between pixels. This paper introduces a variant of stochastic watershed where the probabilities of contours are computed from a Gaussian model of image regions. In this framework, the basic ingredient is the distance between pairs of regions, hence a distance between normal distributions. Hence several alternatives of statistical distances for normal distributions are compared, namely Bhattacharyya distance, Hellinger metric distance and Wasserstein metric distance
Missed Opportunities: Refusal to Confirm Reactive Rapid HIV Tests in the Emergency Department
Background: HIV infection remains a major US public health concern. While HIV-infected individuals now benefit from earlier diagnosis and improved treatment options, progress is tempered by large numbers of newly diagnosed patients who are lost to follow-up prior to disease confirmation and linkage to care. Methodology: In the randomized, controlled USHER trial, we offered rapid HIV tests to patients presenting to a Boston, MA emergency department. Separate written informed consent was required for confirmatory testing. In a secondary analysis, we compared participants with reactive results who did and did not complete confirmatory testing to identify factors associated with refusal to complete the confirmation protocol. Principal findings: Thirteen of 62 (21.0%, 95% CI (11.7%, 33.2%)) participants with reactive rapid HIV tests refused confirmation; women, younger participants, African Americans, and those with fewer HIV risks, with lower income, and without primary care doctors were more likely to refuse. We projected that up to four true HIV cases were lost at the confirmation stage. Conclusions: These findings underscore the need to better understand the factors associated with refusal to confirm reactive HIV testing and to identify interventions that will facilitate confirmatory testing and linkage to care among these populations
Constructive links between some morphological hierarchies on edge-weighted graphs
International audienceIn edge-weighted graphs, we provide a unified presentation of a family of popular morphological hierarchies such as component trees, quasi flat zones, binary partition trees, and hierarchical watersheds. For any hierarchy of this family, we show if (and how) it can be obtained from any other element of the family. In this sense, the main contribution of this paper is the study of all constructive links between these hierarchies
Access and metro network convergence for flexible end-to-end network design
This paper reports on the architectural, protocol, physical layer, and integrated testbed demonstrations carried out by the DISCUS FP7 consortium in the area of access - metro network convergence. Our architecture modeling results show the vast potential for cost and power savings that node consolidation can bring. The architecture, however, also recognizes the limits of long-reach transmission for low-latency 5G services and proposes ways to address such shortcomings in future projects. The testbed results, which have been conducted end-to-end, across access - metro and core, and have targeted all the layers of the network from the application down to the physical layer, show the practical feasibility of the concepts proposed in the project
- …
