1,479 research outputs found

    Zero-Shot Deep Domain Adaptation

    Full text link
    Domain adaptation is an important tool to transfer knowledge about a task (e.g. classification) learned in a source domain to a second, or target domain. Current approaches assume that task-relevant target-domain data is available during training. We demonstrate how to perform domain adaptation when no such task-relevant target-domain data is available. To tackle this issue, we propose zero-shot deep domain adaptation (ZDDA), which uses privileged information from task-irrelevant dual-domain pairs. ZDDA learns a source-domain representation which is not only tailored for the task of interest but also close to the target-domain representation. Therefore, the source-domain task of interest solution (e.g. a classifier for classification tasks) which is jointly trained with the source-domain representation can be applicable to both the source and target representations. Using the MNIST, Fashion-MNIST, NIST, EMNIST, and SUN RGB-D datasets, we show that ZDDA can perform domain adaptation in classification tasks without access to task-relevant target-domain training data. We also extend ZDDA to perform sensor fusion in the SUN RGB-D scene classification task by simulating task-relevant target-domain representations with task-relevant source-domain data. To the best of our knowledge, ZDDA is the first domain adaptation and sensor fusion method which requires no task-relevant target-domain data. The underlying principle is not particular to computer vision data, but should be extensible to other domains.Comment: This paper is accepted to the European Conference on Computer Vision (ECCV), 201

    Object Contour and Edge Detection with RefineContourNet

    Full text link
    A ResNet-based multi-path refinement CNN is used for object contour detection. For this task, we prioritise the effective utilization of the high-level abstraction capability of a ResNet, which leads to state-of-the-art results for edge detection. Keeping our focus in mind, we fuse the high, mid and low-level features in that specific order, which differs from many other approaches. It uses the tensor with the highest-levelled features as the starting point to combine it layer-by-layer with features of a lower abstraction level until it reaches the lowest level. We train this network on a modified PASCAL VOC 2012 dataset for object contour detection and evaluate on a refined PASCAL-val dataset reaching an excellent performance and an Optimal Dataset Scale (ODS) of 0.752. Furthermore, by fine-training on the BSDS500 dataset we reach state-of-the-art results for edge-detection with an ODS of 0.824.Comment: Keywords: Object Contour Detection, Edge Detection, Multi-Path Refinement CN

    Anatomically Constrained Video-CT Registration via the V-IMLOP Algorithm

    Full text link
    Functional endoscopic sinus surgery (FESS) is a surgical procedure used to treat acute cases of sinusitis and other sinus diseases. FESS is fast becoming the preferred choice of treatment due to its minimally invasive nature. However, due to the limited field of view of the endoscope, surgeons rely on navigation systems to guide them within the nasal cavity. State of the art navigation systems report registration accuracy of over 1mm, which is large compared to the size of the nasal airways. We present an anatomically constrained video-CT registration algorithm that incorporates multiple video features. Our algorithm is robust in the presence of outliers. We also test our algorithm on simulated and in-vivo data, and test its accuracy against degrading initializations.Comment: 8 pages, 4 figures, MICCA

    Runtime Distributions and Criteria for Restarts

    Full text link
    Randomized algorithms sometimes employ a restart strategy. After a certain number of steps, the current computation is aborted and restarted with a new, independent random seed. In some cases, this results in an improved overall expected runtime. This work introduces properties of the underlying runtime distribution which determine whether restarts are advantageous. The most commonly used probability distributions admit the use of a scale and a location parameter. Location parameters shift the density function to the right, while scale parameters affect the spread of the distribution. It is shown that for all distributions scale parameters do not influence the usefulness of restarts and that location parameters only have a limited influence. This result simplifies the analysis of the usefulness of restarts. The most important runtime probability distributions are the log-normal, the Weibull, and the Pareto distribution. In this work, these distributions are analyzed for the usefulness of restarts. Secondly, a condition for the optimal restart time (if it exists) is provided. The log-normal, the Weibull, and the generalized Pareto distribution are analyzed in this respect. Moreover, it is shown that the optimal restart time is also not influenced by scale parameters and that the influence of location parameters is only linear

    A note using mergers and acquisitions to gain competitive advantage in the United States in the case of Latin American MNCs

    Get PDF
    Author's OriginalThe "new" economic and business climate in Latin America, fostered by multilateral trade agreements such as NAFTA, MERCOSUR, and the ANDEAN Pact, suggests that Latin American (LA) firms must become more aggressive and competitive in order to survive. Foreign direct investment in the form of mergers and acquisitions (M&A) is often an effective way of competing in a tough global environment. Using transactions data collected from Security Data Company's Worldwide Merger and Acquisition database, this paper analyzes the relative involvement of firms from five LA countries (Argentina, Brazil, Chile, Mexico, and Venezuela) in acquiring targets in the United States of America. Transaction characteristics examined and summarized include the annual distribution (1985-1998) of the deals, the industrial sector of the target firm, the form of acquisition method used, and the form of ownership of the target firm. The trends are analyzed, and implications for managers are indicated.Milman, C. D., D’Mello, J. P., Aybar, B., & Arbaláez, H. (2001). A note using mergers and acquisitions to gain competitive advantage in the United States in the case of Latin American MNCs. International Review of Financial Analysis, 10(3), 323-332. doi:10.1016/S1057-5219(01)00056-

    Climbing: A Unified Approach for Global Constraints on Hierarchical Segmentation

    Get PDF
    International audienceThe paper deals with global constraints for hierarchical segmentations. The proposed framework associates, with an input image, a hierarchy of segmentations and an energy, and the subsequent optimization problem. It is the first paper that compiles the different global constraints and unifies them as Climbing energies. The transition from global optimization to local optimization is attained by the h-increasingness property, which allows to compare parent and child partition energies in hierarchies. The laws of composition of such energies are established and examples are given over the Berkeley Dataset for colour and texture segmentation

    Statistical Gaussian Model of Image Regions in Stochastic Watershed Segmentation

    No full text
    International audienceStochastic watershed is an image segmentation technique based on mathematical morphology which produces a probability density function of image contours. Estimated probabilities depend mainly on local distances between pixels. This paper introduces a variant of stochastic watershed where the probabilities of contours are computed from a Gaussian model of image regions. In this framework, the basic ingredient is the distance between pairs of regions, hence a distance between normal distributions. Hence several alternatives of statistical distances for normal distributions are compared, namely Bhattacharyya distance, Hellinger metric distance and Wasserstein metric distance

    Missed Opportunities: Refusal to Confirm Reactive Rapid HIV Tests in the Emergency Department

    Get PDF
    Background: HIV infection remains a major US public health concern. While HIV-infected individuals now benefit from earlier diagnosis and improved treatment options, progress is tempered by large numbers of newly diagnosed patients who are lost to follow-up prior to disease confirmation and linkage to care. Methodology: In the randomized, controlled USHER trial, we offered rapid HIV tests to patients presenting to a Boston, MA emergency department. Separate written informed consent was required for confirmatory testing. In a secondary analysis, we compared participants with reactive results who did and did not complete confirmatory testing to identify factors associated with refusal to complete the confirmation protocol. Principal findings: Thirteen of 62 (21.0%, 95% CI (11.7%, 33.2%)) participants with reactive rapid HIV tests refused confirmation; women, younger participants, African Americans, and those with fewer HIV risks, with lower income, and without primary care doctors were more likely to refuse. We projected that up to four true HIV cases were lost at the confirmation stage. Conclusions: These findings underscore the need to better understand the factors associated with refusal to confirm reactive HIV testing and to identify interventions that will facilitate confirmatory testing and linkage to care among these populations

    Constructive links between some morphological hierarchies on edge-weighted graphs

    Get PDF
    International audienceIn edge-weighted graphs, we provide a unified presentation of a family of popular morphological hierarchies such as component trees, quasi flat zones, binary partition trees, and hierarchical watersheds. For any hierarchy of this family, we show if (and how) it can be obtained from any other element of the family. In this sense, the main contribution of this paper is the study of all constructive links between these hierarchies

    Access and metro network convergence for flexible end-to-end network design

    Get PDF
    This paper reports on the architectural, protocol, physical layer, and integrated testbed demonstrations carried out by the DISCUS FP7 consortium in the area of access - metro network convergence. Our architecture modeling results show the vast potential for cost and power savings that node consolidation can bring. The architecture, however, also recognizes the limits of long-reach transmission for low-latency 5G services and proposes ways to address such shortcomings in future projects. The testbed results, which have been conducted end-to-end, across access - metro and core, and have targeted all the layers of the network from the application down to the physical layer, show the practical feasibility of the concepts proposed in the project
    corecore