3,190 research outputs found
Non-Markovian entanglement dynamics in the presence of system-bath coherence
A complete treatment of the entanglement of two-level systems, which evolves
through the contact with a thermal bath, must include the fact that the system
and the bath are not fully separable. Therefore, quantum coherent
superpositions of system and bath states, which are almost never fully included
in theoretical models, are invariably present when an entangled state is
prepared experimentally. We show their importance for the time evolution of the
entanglement of two qubits coupled to independent baths. In addition, our
treatment is able to handle slow and low-temperature thermal baths.Comment: Accepted for publication in Phys. Rev. Lett
Satellite refrigeration study. Part II TECHNICAL analysis
Low temperature refrigeration system for satellite mounted infrared sensor coolin
Perfil logístico de Colombia
El presente documento ofrece un estudio del perfil logístico de Colombia con la finalidad de dar a conocer el estado de arte de las ciudades, puertos e infraestructura principal para facilitar la toma de decisiones de los empresarios. Para el desarrollo de este trabajo se determinaron a partir de un análisis competitivo del país; las principales ciudades y puertos; logrando establecer un inventario de maquinaria y equipo e infraestructura logística; enmarcados en retos ya establecidos en las políticas públicas.This document provides a profile study logistics Colombia in order to present the state of art of the cities, ports and infrastructure in facilitating the decision making of managers.
For the development of this work were determined from a competitive analysis of the country's major cities and ports, making an inventory of machinery and equipment and logistics infrastructure; framed challenges established in public policy
A molecular timetable for apical bud formation and dormancy induction in poplar
The growth of perennial plants in the temperate zone alternates with periods of dormancy that are typically initiated during bud development in autumn. In a systems biology approach to unravel the underlying molecular program of apical bud development in poplar (Populus tremula 3 Populus alba), combined transcript and metabolite profiling were applied to a high-resolution time course from short-day induction to complete dormancy. Metabolite and gene expression dynamics were used to reconstruct the temporal sequence of events during bud development. Importantly, bud development could be dissected into bud formation, acclimation to dehydration and cold, and dormancy. To each of these processes, specific sets of regulatory and marker genes and metabolites are associated and provide a reference frame for future functional studies. Light, ethylene, and abscisic acid signal transduction pathways consecutively control bud development by setting, modifying, or terminating these processes. Ethylene signal transduction is positioned temporally between light and abscisic acid signals and is putatively activated by transiently low hexose pools. The timing and place of cell proliferation arrest (related to dormancy) and of the accumulation of storage compounds (related to acclimation processes) were established within the bud by electron microscopy. Finally, the identification of a large set of genes commonly expressed during the growth-to-dormancy transitions in poplar apical buds, cambium, or Arabidopsis thaliana seeds suggests parallels in the underlying molecular mechanisms in different plant organs
CFD Models of a Serpentine Inlet, Fan, and Nozzle
Several computational fluid dynamics (CFD) codes were used to analyze the Versatile Integrated Inlet Propulsion Aerodynamics Rig (VIIPAR) located at NASA Glenn Research Center. The rig consists of a serpentine inlet, a rake assembly, inlet guide vanes, a 12-in. diameter tip-turbine driven fan stage, exit rakes or probes, and an exhaust nozzle with a translating centerbody. The analyses were done to develop computational capabilities for modeling inlet/fan interaction and to help interpret experimental data. Three-dimensional Reynolds averaged Navier-Stokes (RANS) calculations of the fan stage were used to predict the operating line of the stage, the effects of leakage from the turbine stream, and the effects of inlet guide vane (IGV) setting angle. Coupled axisymmetric calculations of a bellmouth, fan, and nozzle were used to develop techniques for coupling codes together and to investigate possible effects of the nozzle on the fan. RANS calculations of the serpentine inlet were coupled to Euler calculations of the fan to investigate the complete inlet/fan system. Computed wall static pressures along the inlet centerline agreed reasonably well with experimental data but computed total pressures at the aerodynamic interface plane (AIP) showed significant differences from the data. Inlet distortion was shown to reduce the fan corrected flow and pressure ratio, and was not completely eliminated by passage through the fa
The evolution of representation in simple cognitive networks
Representations are internal models of the environment that can provide
guidance to a behaving agent, even in the absence of sensory information. It is
not clear how representations are developed and whether or not they are
necessary or even essential for intelligent behavior. We argue here that the
ability to represent relevant features of the environment is the expected
consequence of an adaptive process, give a formal definition of representation
based on information theory, and quantify it with a measure R. To measure how R
changes over time, we evolve two types of networks---an artificial neural
network and a network of hidden Markov gates---to solve a categorization task
using a genetic algorithm. We find that the capacity to represent increases
during evolutionary adaptation, and that agents form representations of their
environment during their lifetime. This ability allows the agents to act on
sensorial inputs in the context of their acquired representations and enables
complex and context-dependent behavior. We examine which concepts (features of
the environment) our networks are representing, how the representations are
logically encoded in the networks, and how they form as an agent behaves to
solve a task. We conclude that R should be able to quantify the representations
within any cognitive system, and should be predictive of an agent's long-term
adaptive success.Comment: 36 pages, 10 figures, one Tabl
Energy transfer in structured and unstructured environments: Master equations beyond the Born-Markov approximations
We explore excitonic energy transfer dynamics in a molecular dimer system coupled to both structured and unstructured oscillator environments. By extending the reaction coordinate master equation technique developed by Iles-Smith et al. [Phys. Rev. A 90, 032114 (2014)], we go beyond the commonly used Born-Markov approximations to incorporate system-environment correlations and the resultant non-Markovian dynamical effects. We obtain energy transfer dynamics for both underdamped and overdamped oscillator environments that are in perfect agreement with the numerical hierarchical equations of motion over a wide range of parameters. Furthermore, we show that the Zusman equations, which may be obtained in a semiclassical limit of the reaction coordinate model, are often incapable of describing the correct dynamical behaviour. This demonstrates the necessity of properly accounting for quantum correlations generated between the system and its environment when the Born-Markov approximations no longer hold. Finally, we apply the reaction coordinate formalism to the case of a structured environment comprising of both underdamped (i.e., sharply peaked) and overdamped (broad) components simultaneously. We find that though an enhancement of the dimer energy transfer rate can be obtained when compared to an unstructured environment, its magnitude is rather sensitive to both the dimer-peak resonance conditions and the relative strengths of the underdamped and overdamped contributions
Kidney epithelium specific deletion of kelch-like ECH-associated protein 1 (Keap1) causes hydronephrosis in mice
Construction and first performance studies of a CBM TRD prototype with alternating wires developed in Frankfurt
- …
