133 research outputs found
Standardized reporting of the costs of management interventions for biodiversity conservation
Effective conservation management interventions must combat threats and deliver conservation benefits at costs that can be achieved within limited budgets. Considerable effort has focused on measuring the potential benefits of conservation interventions but explicit quantification of implementation costs has been rare. Even when costs have been quantified, haphazard and inconsistent reporting means that published values are difficult to interpret. This reporting deficiency hinders progress towards building a collective understanding of the costs of management interventions across projects, and thus limits our ability to identify efficient solutions to conservation problems or attract adequate funding. We address this challenge by proposing a standardized approach to describing costs reported for conservation interventions. These standards call for researchers and practitioners to ensure the cost data they collect and report on provide enough contextual information that readers and future users can interpret the data appropriately. We suggest these standards be adopted by major conservation organizations, conservation science institutions, and journals, so that cost reporting is comparable between studies. This would support shared learning and enhance our ability to identify and perform cost-effective conservation.Funding was provided by CEED (GDI and workshop), an ARC Laureate Fellowship (HPP, BM, VA and JM), Arcadia (WJS), the Natural Environment Research Council (LVD, NE/K015419/1; NE/N014472/1) and the Wildlife Conservation Society (AJP)
The Evolution of Communication Mechanisms in Self-Organised Ecological Aggregations:Impact on Pattern Formation
Collective behaviours in animal communities are the result of inter-individual communication. However, communication signals are not fixed; they evolve to ensure more effective interactions between the emitter and receiver of these signals. In this study we use a mathematical approach and investigate the effect of changes in communication signals (at both receiver and emitter levels) on the aggregation patterns displayed by these animal communities. We use simple linear stability analysis to study the impact that the loss/gain in signals strength has on the formation of stationary and moving animal aggregations. We then use numerical simulations to study the impact of these signal strengths on the long-term persistence of some stationary and moving aggregations. We show that a reduction in the strength of such communication signals can stop the movement of some aggregations. Moreover, for very weak signals, one can obtain a variety of standing wave patterns characterised by left-moving and right-moving waves of individuals passing through each other, with or without some individuals joining the opposite-moving group
Increased Local Retention of Reef Coral Larvae as a Result of Ocean Warming
Climate change will alter many aspects of the ecology of organisms, including dispersal patterns and population connectivity. Understanding these changes is essential to predict future species distributions, estimate potential for adaptation, and design effective networks of protected areas. In marine environments, dispersal is often accomplished by larvae. At higher temperatures, larvae develop faster, but suffer higher mortality, making the effect of temperature on dispersal difficult to predict. Here, we experimentally calibrate the effect of temperature on larval survival and settlement in a dynamic model of coral dispersal. Our findings imply that most reefs globally will experience several-fold increases in local retention of larvae due to ocean warming. This increase will be particularly pronounced for reefs with mean water residence times comparable to the time required for species to become competent to settle. Higher local retention rates strengthen the link between abundance and recruitment at the reef scale, suggesting that populations will be more responsive to local conservation actions. Higher rates of local retention and mortality will weaken connectivity between populations, and thus potentially retard recovery following severe disturbances that substantially deplete local populations. Conversely, on isolated reefs that are dependent on replenishment from local broodstock, increases in local retention may hasten recovery
Comparative Influence of Ocean Conditions on Yellowfin and Atlantic Bluefin Tuna Catch from Longlines in the Gulf of Mexico
Directed fishing effort for Atlantic bluefin tuna in the Gulf of Mexico (GOM), their primary spawning grounds in the western Atlantic, has been prohibited since the 1980s due to a precipitous decline of the spawning stock biomass. However, pelagic longlines targeted at other species, primarily yellowfin tuna and swordfish, continue to catch Atlantic bluefin tuna in the GOM as bycatch. Spatial and temporal management measures minimizing bluefin tuna bycatch in the GOM will likely become important in rebuilding the western Atlantic bluefin stock. In order to help inform management policy and understand the relative distribution of target and bycatch species in the GOM, we compared the spatiotemporal variability and environmental influences on the catch per unit effort (CPUE) of yellowfin (target) and bluefin tuna (bycatch). Catch and effort data from pelagic longline fisheries observers (1993–2005) and scientific tagging cruises (1998–2002) were coupled with environmental and biological data. Negative binomial models were used to fit the data for both species and Akaike's Information Criterion (corrected for small sample size) was used to determine the best model. Our results indicate that bluefin CPUE had higher spatiotemporal variability as compared to yellowfin CPUE. Bluefin CPUE increased substantially during the breeding months (March-June) and peaked in April and May, while yellowfin CPUE remained relatively high throughout the year. In addition, bluefin CPUE was significantly higher in areas with negative sea surface height anomalies and cooler sea surface temperatures, which are characteristic of mesoscale cyclonic eddies. In contrast, yellowfin CPUE was less sensitive to environmental variability. These differences in seasonal variability and sensitivity to environmental influences suggest that bluefin tuna bycatch in the GOM can be reduced substantially by managing the spatial and temporal distribution of the pelagic longline effort without substantially impacting yellowfin tuna catches
Connectivity and resilience of coral reef metapopulations in marine protected areas : matching empirical efforts to predictive needs
© 2009 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Coral Reefs 28 (2009): 327-337, doi:10.1007/s00338-009-0466-z.Design and decision-making for marine protected areas (MPAs) on coral reefs require prediction of MPA effects with population models. Modeling of MPAs has shown how the persistence of metapopulations in systems of MPAs depends on the size and spacing of MPAs, and levels of fishing outside the MPAs. However, the pattern of demographic connectivity produced by larval dispersal is a key uncertainty in those modeling studies. The information required to assess population persistence is a dispersal matrix containing the fraction of larvae traveling to each location from each location, not just the current number of larvae exchanged among locations. Recent metapopulation modeling research with hypothetical dispersal matrices has shown how the spatial scale of dispersal, degree of advection versus diffusion, total larval output, and temporal and spatial variability in dispersal influence population persistence. Recent empirical studies using population genetics, parentage analysis, and geochemical and artificial marks in calcified structures have improved the understanding of dispersal. However, many such studies report current self-recruitment (locally produced settlement/settlement from elsewhere), which is not as directly useful as local retention (locally produced settlement/total locally released), which is a component of the dispersal matrix. Modeling of biophysical circulation with larval particle tracking can provide the required elements of dispersal matrices and assess their sensitivity to flows and larval behavior, but it requires more assumptions than direct empirical methods. To make rapid progress in understanding the scales and patterns of connectivity, greater communication between empiricists and population modelers will be needed. Empiricists need to focus more on identifying the characteristics of the dispersal matrix, while population modelers need to track and assimilate evolving empirical results.Work by CB Paris was supported by the
National Science Foundation grant NSF-OCE 0550732. Work by
M-A Coffroth and SR Thorrold was supported by the National Science
Foundation grant NSF-OCE 0424688. Work by TL Shearer was
supported by an International Cooperative Biodiversity Group grant
R21 TW006662-01 from the Fogarty International Center at the
National Institutes of Health
Avoiding Costly Conservation Mistakes: The Importance of Defining Actions and Costs in Spatial Priority Setting
Background: The typical mandate in conservation planning is to identify areas that represent biodiversity targets within the smallest possible area of land or sea, despite the fact that area may be a poor surrogate for the cost of many conservation actions. It is also common for priorities for conservation investment to be identified without regard to the particular conservation action that will be implemented. This demonstrates inadequate problem specification and may lead to inefficiency: the cost of alternative conservation actions can differ throughout a landscape, and may result in dissimilar conservation priorities
- …
