5,075 research outputs found
Nuclear liquid-gas phase transition and supernovae evolution
It is shown that the large density fluctuations appearing at the onset of the
first order nuclear liquid-gas phase transition can play an important role in
the supernovae evolution. Due to these fluctuations, the neutrino gas may be
trapped inside a thin layer of matter near the proto-neutron star surface. The
resulting increase of pressure may induce strong particle ejection a few
hundred milliseconds after the bounce of the collapse, contributing to the
revival of the shock wave. The Hartree-Fock+RPA scheme, with a finite-range
nucleon-nucleon effective interaction, is employed to estimate the effects of
the neutrino trapping due to the strong density fluctuations, and to discuss
qualitatively the consequences of the suggested new scenario.Comment: version2 - precise that nuclear liquid-gas phase transition is 1st
order and the unique instable mode is isoscala
Contestable adulthood: variability and disparity in markers for negotiating the transition to adulthood
Recent research has identified a discreet set of subjective markers that are seen as characterizing the transition to adulthood. The current study challenges this coherence by examining the disparity and variability in young people’s selection of such criteria. Four sentence-completion cues corresponding to four differentcontexts in which adult status might be contested were given to 156 British 16- to 17-year-olds. Their qualitative responses were analyzed to
explore patterns whilst capturing some of their richness and diversity. An astonishing amount of variability emerged, both within and between cued contexts.The implications of this variability for how the transition to adulthood is experienced are explored. The argument is made that markers of the transition to adulthood are not merely reflective of the bio–psycho–social development of
young people. Rather, adulthood here is seen as an essentially contested concept,located within the discursive interactional environment in which young people participate
Algal culture studies for CELSS
Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities
Evidence for a Mid-Atomic-Number Atmosphere in the Neutron Star 1E1207.4-5209
Recently Sanwal et al. (2002) reported the first clear detection of
absorption features in an isolated neutron star, 1E1207.4-5209. Remarkably
their spectral modeling demonstrates that the atmosphere cannot be Hydrogen.
They speculated that the neutron star atmosphere is indicative of ionized
Helium in an ultra-strong (~1.5x10^{14} G) magnetic field. We have applied our
recently developed atomic model (Mori & Hailey 2002) for strongly-magnetized
neutron star atmospheres to this problem. We find that this model, along with
some simp le atomic physics arguments, severely constrains the possible
composition of the atmosphere. In particular we find that the absorption
features are naturally associated with He-like Oxygen or Neon in a magnetic
field of ~10^{12} G, comparable to the magnetic field derived from the spin
parameters of the neutron star. This interpretation is consistent with the
relative line strengths and widths and is robust. Our model predicts possible
substructure in the spectral features, which has now been reported by
XMM-Newton (Mereghetti et al. 2002). However we show the Mereghetti et al.
claim that the atmosphere is Iron or some comparable high-Z element at ~
10^{12} G is easily ruled out by the Chandra and XMM-Newton data.Comment: 5 pages, AASTeX, Revised version. Accepted for publication in ApJ
Letter
Two-Dimensional Hydrodynamics of Pre-Core Collapse: Oxygen Shell Burning
By direct hydrodynamic simulation, using the Piecewise Parabolic Method (PPM)
code PROMETHEUS, we study the properties of a convective oxygen burning shell
in a SN 1987A progenitor star prior to collapse. The convection is too
heterogeneous and dynamic to be well approximated by one-dimensional
diffusion-like algorithms which have previously been used for this epoch.
Qualitatively new phenomena are seen.
The simulations are two-dimensional, with good resolution in radius and
angle, and use a large (90-degree) slice centered at the equator. The
microphysics and the initial model were carefully treated. Many of the
qualitative features of previous multi-dimensional simulations of convection
are seen, including large kinetic and acoustic energy fluxes, which are not
accounted for by mixing length theory. Small but significant amounts of
carbon-12 are mixed non-uniformly into the oxygen burning convection zone,
resulting in hot spots of nuclear energy production which are more than an
order of magnitude more energetic than the oxygen flame itself. Density
perturbations (up to 8%) occur at the `edges' of the convective zone and are
the result of gravity waves generated by interaction of penetrating flows into
the stable region. Perturbations of temperature and electron fraction at the
base of the convective zone are of sufficient magnitude to create angular
inhomogeneities in explosive nucleosynthesis products, and need to be included
in quantitative estimates of yields. Combined with the plume-like velocity
structure arising from convection, the perturbations will contribute to the
mixing of nickel-56 throughout supernovae envelopes. Runs of different
resolution, and angular extent, were performed to test the robustness of theseComment: For mpeg movies of these simulations, see
http://www.astrophysics.arizona.edu/movies.html Submitted to the
Astrophysical Journa
Expression, Purification, Crystallization and Preliminary X-Ray Analysis of \u3cem\u3ePseudomonas aeuginosa\u3c/em\u3e AlgX
AlgX is a periplasmic protein required for the production of the exopolysaccharide alginate in Pseudomonas sp. and Azotobacter vinelandii. AlgX has been overexpressed and purified and diffraction-quality crystals have been grown using iterative seeding and the hanging-drop vapor-diffusion method. The crystals grew as flat plates with unit-cell parameters a=46.4, b=120.6, c=86.9Å, β=95.7°. The cyrstals exhibited the symmetry of space group P21 and diffracted to a minimimum d-spacing of 2.1Å. On the basis of the Matthews coefficient (VM=2.25Å3 Da-1), two molecules were estimated to be present in the asymmetric unit
Differing calcification processes in cultured vascular smooth muscle cells and osteoblasts
© 2019 Published by Elsevier Inc.Arterial medial calcification (AMC) is the deposition of calcium phosphate mineral, often as hydroxyapatite, inthe medial layer of the arteries. AMC shares some similarities to skeletal mineralisation and has been associatedwith the transdifferentiation of vascular smooth muscle cells (VSMCs) towards an osteoblast-like phenotype. Thisstudy used primary mouse VSMCs and calvarial osteoblasts to directly compare the established and widely usedin vitromodels of AMC and bone formation. Significant differences were identified between osteoblasts andcalcifying VSMCs. First, osteoblasts formed large mineralised bone nodules that were associated with widespreaddeposition of an extracellular collagenous matrix. In contrast, VSMCs formed small discrete regions of calcifi-cation that were not associated with collagen deposition and did not resemble bone. Second, calcifying VSMCsdisplayed a progressive reduction in cell viability over time (≤7-fold), with a 50% increase in apoptosis,whereas osteoblast and control VSMCs viability remained unchanged. Third, osteoblasts expressed high levels ofalkaline phosphatase (TNAP) activity and TNAP inhibition reduced bone formation by to 90%. TNAP activity incalcifying VSMCs was∼100-fold lower than that of bone-forming osteoblasts and cultures treated withβ-gly-cerophosphate, a TNAP substrate, did not calcify. Furthermore, TNAP inhibition had no effect on VSMC calci-fication. Although, VSMC calcification was associated with increased mRNA expression of osteoblast-relatedgenes (e.g. Runx2, osterix, osteocalcin, osteopontin), the relative expression of these genes was up to 40-foldlower in calcifying VSMCs versus bone-forming osteoblasts. In summary, calcifying VSMCsin vitrodisplay somelimited osteoblast-like characteristics but also differ in several key respects: 1) their inability to form collagen-containing bone; 2) their lack of reliance on TNAP to promote mineral deposition; and, 3) the deleterious effectof calcification on their viability.Peer reviewedFinal Published versio
Analytical representations of unified equations of state of neutron-star matter
Analytical representations are derived for two equations of state (EOSs) of
neutron-star matter: FPS and SLy. Each of these EOSs is unified, that is, it
describes the crust and the core of a neutron star using the same physical
model. Two versions of the EOS parametrization are considered. In the first
one, pressure and mass density are given as functions of the baryon density. In
the second version, pressure, mass density, and baryon density are given as
functions of the pseudo-enthalpy, which makes this representation particularly
useful for 2-D calculations of stationary rotating configurations of neutron
stars.Comment: 7 pages, 5 figures, 3 tables, accepted by A&A. In v.2, auxiliary fits
(15) and (16) are correcte
An analysis of the productivity of a CELSS continuous algal culture system
One of the most attractive aspects of using algal cultures as plant components for a Closed Ecological Life Support Systems (CELSS) is the efficiency with which they can be grown. Although algae are not necessarily intrinsically more efficient than higher plants, the ease which they can be handled and manipulated (more like chemical reagents than plants), and the culturing techniques available, result in much higher growth rates than are usually attainable with higher plants. Furthermore, preliminary experiments have demonstrated that algal growth and physiology is not detectable altered in a microgravity environment, (1) whereas the response of higher plants to zero gravity is unknown. In order to rationally design and operate culture systems, it is necessary to understand how the macroparameters of a culture system, e.g., productivity, are related to the physiological aspects of the algal culture. A first principles analysis of culture system is discussed, and a mathematical model that describes the relationship of culture productivity to the cell concentration of light-limited culture is derived. The predicted productivity vs cell concentration curve agrees well with the experimental data obtained to test this model, indicating that this model permits an accurate prediction of culture productivity given the growth parameters of the system
An optimal hydrodynamic model for the normal Type IIP supernova 1999em
There is still no consensus about progenitor masses of Type IIP supernovae.
We study a normal Type IIP SN 1999em in detail and compare it to a peculiar
Type IIP SN 1987A. We computed the hydrodynamic and time-dependent atmosphere
models interpreting simultaneously both the photometric and spectroscopic
observations. The bolometric light curve of SN 1999em and the spectral
evolution of its H-alpha line are consistent with a presupernova radius of 500
Rsun, an ejecta mass of 19.0 Msun, an explosion energy of 1.3x10^51 erg, and a
radioactive 56Ni mass of 0.036 Msun. A mutual mixing of hydrogen-rich and
helium-rich matter in the inner layers of the ejecta guarantees a good fit of
the calculated light curve to that observed. Based on the hydrodynamic models
in the vicinity of the optimal model, we derive the approximate relationships
between the basic physical and observed parameters. We find that the hydrogen
recombination in the atmosphere of a normal Type IIP SN 1999em, as well as most
likely other Type IIP supernovae at the photospheric epoch, is essentially a
time-dependent phenomenon. It is also shown that in normal Type IIP supernovae
the homologous expansion of the ejecta in its atmosphere takes place starting
from nearly the third day after the supernova explosion. A comparison of SN
1999em with SN 1987A reveals two very important results for supernova theory.
First, the comparability of the helium core masses and the explosion energies
implies a unique explosion mechanism for these core collapse supernovae.
Second, the optimal model for SN 1999em is characterized by a weaker 56Ni
mixing up to 660 km/s compared to a moderate 56Ni mixing up to 3000 km/s in SN
1987A, hydrogen being mixed deeply downward to 650 km/s.Comment: 21 pages, 24 figures. Accepted for publication in Astronomy &
Astrophysic
- …
