6,784 research outputs found

    Studying Three Phase Supply in School

    Full text link
    The power distribution of nearly all major countries have accepted 3-phase distribution as a standard. With increasing power requirements of instrumentation today even a small physics laboratory requires 3-phase supply. While physics students are given an introduction of this in passing, no experiment work is done with 3-phase supply due to the sheer possibility of accidents while working with such large powers. We believe a conceptual understanding of 3-phase supply would be useful for physics students with hands on experience using a simple circuit that can be assembled even in a high school laboratorys

    Long range experimental hydrologic forecasting for the eastern U.S.

    Get PDF
    We explore a strategy for long-range hydrologic forecasting that uses ensemble climate model forecasts as input to a macroscale hydrologic model to produce runoff and streamflow forecasts at spatial and temporal scales appropriate for water management. Monthly ensemble climate model forecasts produced by the National Centers for Environmental Prediction/Climate Prediction Center global spectral model (GSM) are bias corrected, downscaled to 1/8° horizontal resolution, and disaggregated to a daily time step for input to the Variable Infiltration Capacity hydrologic model. Bias correction is effected by evaluating the GSM ensemble forecast variables as percentiles relative to the GSM model climatology and then extracting the percentiles\u27 associated variable values instead from the observed climatology. The monthly meteorological forecasts are then interpolated to the finer hydrologic model scale, at which a daily signal that preserves the forecast anomaly is imposed through resampling of the historic record. With the resulting monthly runoff and streamflow forecasts for the East Coast and Ohio River basin, we evaluate the bias correction and resampling approaches during the southeastern United States drought from May to August 2000 and also for the El Niño conditions of December 1997 to February 1998. For the summer 2000 study period, persistence in anomalous initial hydrologic states predominates in determining the hydrologic forecasts. In contrast, the El Niño-condition hydrologic forecasts derive direction both from the climate model forecast signal and the antecedent land surface state. From a qualitative standpoint the hydrologic forecasting strategy appears successful in translating climate forecast signals to hydrologic variables of interest for water management

    Binary Multifunctional Ultrabroadband Self-Powered g-C3N4 /Si Heterojunction High-Speed Photodetector

    Full text link
    Compact optical detectors with fast binary photoswitching over a broad range of wavelength are essential as an interconnect for any light-based parallel, real-time computing. Despite of the tremendous technological advancements yet there is no such single device available that meets the specifications. Here we report a multifunctional self-powered high-speed ultrabroadband (250-1650 nm) photodetector based on g-C3N4/Si hybrid 2D/3D structure. The device shows a novel binary photoswitching (change in current from positive to negative) in response to OFF/ON light illumination at small forward bias (<0.1 V) covering 250-1350 nm. At zero bias, the device displays an extremely high ON/OFF ratio of 1.2 x 10^5 under 680 nm (49 microWcm-2) illumination. The device also shows an ultrasensitive behaviour over the entire operating range at low light illuminations, with highest responsivity (1.2 AW-1), detectivity (2.8 x 10^14 Jones) and external quantum efficiency (213%) at 680 nm. The response and recovery speeds are typically 0.23 and 0.60 ms, respectively, under 288 Hz light switching frequency. Dramatically improved performance of our device is attributed to the heterojunctions formed by the ultrathin g-C3N4 nanosheets embedded in the Si surface.Comment: 21 page, 8 figures, 3 table
    corecore