1,623 research outputs found
The selling of put derivatives by firms for shareholder wealth and information signaling enhancement
Working paper; version dated November 5, 200
Directed current due to broken time-space symmetry
We consider the classical dynamics of a particle in a one-dimensional
space-periodic potential U(X) = U(X+2\pi) under the influence of a
time-periodic space-homogeneous external field E(t)=E(t+T). If E(t) is neither
symmetric function of t nor antisymmetric under time shifts , an ensemble of trajectories with zero current at t=0 yields a nonzero
finite current as . We explain this effect using symmetry
considerations and perturbation theory. Finally we add dissipation (friction)
and demonstrate that the resulting set of attractors keeps the broken symmetry
property in the basins of attraction and leads to directed currents as well.Comment: 2 figure
Probing the N = 32 shell closure below the magic proton number Z = 20: Mass measurements of the exotic isotopes 52,53K
The recently confirmed neutron-shell closure at N = 32 has been investigated
for the first time below the magic proton number Z = 20 with mass measurements
of the exotic isotopes 52,53K, the latter being the shortest-lived nuclide
investigated at the online mass spectrometer ISOLTRAP. The resulting
two-neutron separation energies reveal a 3 MeV shell gap at N = 32, slightly
lower than for 52Ca, highlighting the doubly-magic nature of this nuclide.
Skyrme-Hartree-Fock-Boguliubov and ab initio Gorkov-Green function calculations
are challenged by the new measurements but reproduce qualitatively the observed
shell effect.Comment: 5 pages, 5 figure
Optically induced coherent intra-band dynamics in disordered semiconductors
On the basis of a tight-binding model for a strongly disordered semiconductor
with correlated conduction- and valence band disorder a new coherent dynamical
intra-band effect is analyzed. For systems that are excited by two, specially
designed ultrashort light-pulse sequences delayed by tau relatively to each
other echo-like phenomena are predicted to occur. In addition to the inter-band
photon echo which shows up at exactly t=2*tau relative to the first pulse, the
system responds with two spontaneous intra-band current pulses preceding and
following the appearance of the photon echo. The temporal splitting depends on
the electron-hole mass ratio. Calculating the population relaxation rate due to
Coulomb scattering, it is concluded that the predicted new dynamical effect
should be experimentally observable in an interacting and strongly disordered
system, such as the Quantum-Coulomb-Glass.Comment: to be published in Physical Review B15 February 200
Precision Mass Measurements of 129-131Cd and Their Impact on Stellar Nucleosynthesis via the Rapid Neutron Capture Process
Masses adjacent to the classical waiting-point nuclide 130Cd have been
measured by using the Penning- trap spectrometer ISOLTRAP at ISOLDE/CERN. We
find a significant deviation of over 400 keV from earlier values evaluated by
using nuclear beta-decay data. The new measurements show the reduction of the N
= 82 shell gap below the doubly magic 132Sn. The nucleosynthesis associated
with the ejected wind from type-II supernovae as well as from compact object
binary mergers is studied, by using state-of-the-art hydrodynamic simulations.
We find a consistent and direct impact of the newly measured masses on the
calculated abundances in the A = 128 - 132 region and a reduction of the
uncertainties from the precision mass input data
High-resolution measurement of the time-modulated orbital electron capture and of the decay of hydrogen-like Pm ions
The periodic time modulations, found recently in the two-body orbital
electron-capture (EC) decay of both, hydrogen-like Pr and
Pm ions, with periods near to 7s and amplitudes of about 20%,
were re-investigated for the case of Pm by using a 245 MHz
resonator cavity with a much improved sensitivity and time resolution. We
observed that the exponential EC decay is modulated with a period s, in accordance with a modulation period s as obtained
from simultaneous observations with a capacitive pick-up, employed also in the
previous experiments. The modulation amplitudes amount to and
for the 245 MHz resonator and the capacitive pick-up,
respectively. These new results corroborate for both detectors {\it exactly}
our previous findings of modulation periods near to 7s, though with {\it
distinctly smaller} amplitudes. Also the three-body decays have been
analyzed. For a supposed modulation period near to 7s we found an amplitude , compatible with and in agreement with the preliminary
result of our previous experiment. These observations could
point at weak interaction as origin of the observed 7s-modulation of the EC
decay. Furthermore, the data suggest that interference terms occur in the
two-body EC decay, although the neutrinos are not directly observed.Comment: In memoriam of Prof. Paul Kienle, 9 pages, 1 table, 5 figures Phys.
Lett. B (2013) onlin
Magnetoelectric ordering of BiFeO3 from the perspective of crystal chemistry
In this paper we examine the role of crystal chemistry factors in creating
conditions for formation of magnetoelectric ordering in BiFeO3. It is generally
accepted that the main reason of the ferroelectric distortion in BiFeO3 is
concerned with a stereochemical activity of the Bi lone pair. However, the lone
pair is stereochemically active in the paraelectric orthorhombic beta-phase as
well. We demonstrate that a crucial role in emerging of phase transitions of
the metal-insulator, paraelectric-ferroelectric and magnetic disorder-order
types belongs to the change of the degree of the lone pair stereochemical
activity - its consecutive increase with the temperature decrease. Using the
structural data, we calculated the sign and strength of magnetic couplings in
BiFeO3 in the range from 945 C down to 25 C and found the couplings, which
undergo the antiferromagnetic-ferromagnetic transition with the temperature
decrease and give rise to the antiferromagnetic ordering and its delay in
regard to temperature, as compared to the ferroelectric ordering. We discuss
the reasons of emerging of the spatially modulated spin structure and its
suppression by doping with La3+.Comment: 18 pages, 5 figures, 3 table
Studies of the Response of the Prototype CMS Hadron Calorimeter, Including Magnetic Field Effects, to Pion, Electron, and Muon Beams
We report on the response of a prototype CMS hadron calorimeter module to
charged particle beams of pions, muons, and electrons with momenta up to 375
GeV/c. The data were taken at the H2 and H4 beamlines at CERN in 1995 and 1996.
The prototype sampling calorimeter used copper absorber plates and scintillator
tiles with wavelength shifting fibers for readout. The effects of a magnetic
field of up to 3 Tesla on the response of the calorimeter to muons, electrons,
and pions are presented, and the effects of an upstream lead tungstate crystal
electromagnetic calorimeter on the linearity and energy resolution of the
combined calorimetric system to hadrons are evaluated. The results are compared
with Monte Carlo simulations and are used to optimize the choice of total
absorber depth, sampling frequency, and longitudinal readout segmentation.Comment: 89 pages, 41 figures, to be published in NIM, corresponding author: P
de Barbaro, [email protected]
On the possibility of magneto-structural correlations: detailed studies of di-nickel carboxylate complexes
A series of water-bridged dinickel complexes of the general formula [Ni<sub>2</sub>(μ<sub>2</sub>-OH<sub>2</sub>)(μ2-
O<sub>2</sub>C<sup>t</sup>Bu)<sub>2</sub>(O<sub>2</sub>C<sup>t</sup>Bu)2(L)(L0)] (L = HO<sub>2</sub>C<sup>t</sup>Bu, L0 = HO<sub>2</sub>C<sup>t</sup>Bu (1), pyridine (2),
3-methylpyridine (4); L = L0 = pyridine (3), 3-methylpyridine (5)) has been synthesized
and structurally characterized by X-ray crystallography. The magnetic properties
have been probed by magnetometry and EPR spectroscopy, and detailed measurements
show that the axial zero-field splitting, D, of the nickel(ii) ions is on the same order as
the isotropic exchange interaction, J, between the nickel sites. The isotropic exchange
interaction can be related to the angle between the nickel centers and the bridging
water molecule, while the magnitude of D can be related to the coordination sphere at
the nickel sites
- …
