678 research outputs found
Memory consolidation in the cerebellar cortex
Several forms of learning, including classical conditioning of the eyeblink, depend upon the cerebellum. In examining mechanisms of eyeblink conditioning in rabbits, reversible inactivations of the control circuitry have begun to dissociate aspects of cerebellar cortical and nuclear function in memory consolidation. It was previously shown that post-training cerebellar cortical, but not nuclear, inactivations with the GABA(A) agonist muscimol prevented consolidation but these findings left open the question as to how final memory storage was partitioned across cortical and nuclear levels. Memory consolidation might be essentially cortical and directly disturbed by actions of the muscimol, or it might be nuclear, and sensitive to the raised excitability of the nuclear neurons following the loss of cortical inhibition. To resolve this question, we simultaneously inactivated cerebellar cortical lobule HVI and the anterior interpositus nucleus of rabbits during the post-training period, so protecting the nuclei from disinhibitory effects of cortical inactivation. Consolidation was impaired by these simultaneous inactivations. Because direct application of muscimol to the nuclei alone has no impact upon consolidation, we can conclude that post-training, consolidation processes and memory storage for eyeblink conditioning have critical cerebellar cortical components. The findings are consistent with a recent model that suggests the distribution of learning-related plasticity across cortical and nuclear levels is task-dependent. There can be transfer to nuclear or brainstem levels for control of high-frequency responses but learning with lower frequency response components, such as in eyeblink conditioning, remains mainly dependent upon cortical memory storage
Transfer characteristics of a thermosensory synapse in Caenorhabditis elegans
Caenorhabditis elegans is a compact, attractive system for neural circuit analysis. An understanding of the functional dynamics of neural computation requires physiological analyses. We undertook the characterization of transfer at a central synapse in C. elegans by combining optical stimulation of targeted neurons with electrophysiological recordings. We show that the synapse between AFD and AIY, the first stage in the thermotactic circuit, exhibits excitatory, tonic, and graded release. We measured the linear range of the input-output curve and estimate the static synaptic gain as 0.056 (<0.1). Release showed no obvious facilitation or depression. Transmission at this synapse is peptidergic. The AFD/AIY synapse thus seems to have evolved for reliable transmission of a scaled-down temperature signal from AFD, enabling AIY to monitor and integrate temperature with other sensory input. Combining optogenetics with electrophysiology is a powerful way to analyze C. elegans’ neural function
Synapse development is regulated by microglial THIK-1 K+ channels
Microglia are the resident immune cells of the central nervous system. They constantly survey the brain parenchyma for redundant synapses, debris, or dying cells, which they remove through phagocytosis. Microglial ramification, motility, and cytokine release are regulated by tonically active THIK-1 K+ channels on the microglial plasma membrane. Here, we examined whether these channels also play a role in phagocytosis. Using pharmacological blockers and THIK-1 knockout (KO) mice, we found that a lack of THIK-1 activity approximately halved both microglial phagocytosis and marker levels for the lysosomes that degrade phagocytically removed material. These changes may reflect a decrease of intracellular [Ca2+]i activity, which was observed when THIK-1 activity was reduced, since buffering [Ca2+]i reduced phagocytosis. Less phagocytosis is expected to result in impaired pruning of synapses. In the hippocampus, mice lacking THIK-1 expression had an increased number of anatomically and electrophysiologically defined glutamatergic synapses during development. This resulted from an increased number of presynaptic terminals, caused by impaired removal by THIK-1 KO microglia. The dependence of synapse number on THIK-1 K+ channels, which control microglial surveillance and phagocytic ability, implies that changes in the THIK-1 expression level in disease states may contribute to altering neural circuit function
Global and regional brain metabolic scaling and its functional consequences
Background: Information processing in the brain requires large amounts of
metabolic energy, the spatial distribution of which is highly heterogeneous
reflecting complex activity patterns in the mammalian brain.
Results: Here, it is found based on empirical data that, despite this
heterogeneity, the volume-specific cerebral glucose metabolic rate of many
different brain structures scales with brain volume with almost the same
exponent around -0.15. The exception is white matter, the metabolism of which
seems to scale with a standard specific exponent -1/4. The scaling exponents
for the total oxygen and glucose consumptions in the brain in relation to its
volume are identical and equal to , which is significantly larger
than the exponents 3/4 and 2/3 suggested for whole body basal metabolism on
body mass.
Conclusions: These findings show explicitly that in mammals (i)
volume-specific scaling exponents of the cerebral energy expenditure in
different brain parts are approximately constant (except brain stem
structures), and (ii) the total cerebral metabolic exponent against brain
volume is greater than the much-cited Kleiber's 3/4 exponent. The
neurophysiological factors that might account for the regional uniformity of
the exponents and for the excessive scaling of the total brain metabolism are
discussed, along with the relationship between brain metabolic scaling and
computation.Comment: Brain metabolism scales with its mass well above 3/4 exponen
Monitoring phagocytic uptake of amyloid beta into glial cell lysosomes in real time
Phagocytosis by glial cells is essential to regulate brain function during health and disease. Therapies for Alzheimer's disease (AD) have primarily focused on targeting antibodies to amyloid β (Aβ) or inhibitng enzymes that make it, and while removal of Aβ by phagocytosis is protective early in AD it remains poorly understood. Impaired phagocytic function of glial cells during later stages of AD likely contributes to worsened disease outcome, but the underlying mechanisms of how this occurs remain unknown. We have developed a human Aβ_{1-42} analogue (Aβ^{pH}) that exhibits green fluorescence upon internalization into the acidic organelles of cells but is non-fluorescent at physiological pH. This allowed us to image, for the first time, glial uptake of Aβ^{pH} in real time in live animals. We find that microglia phagocytose more AβpH than astrocytes in culture, in brain slices and in vivo. Aβ^{pH} can be used to investigate the phagocytic mechanisms responsible for removing Aβ from the extracellular space, and thus could become a useful tool to study Aβ clearance at different stages of AD
P2Y13 receptors regulate microglial morphology, surveillance, and resting levels of interleukin 1β release
Microglia sense their environment using an array of membrane receptors. While P2Y12 receptors are known to play a key role in targeting directed motility of microglial processes to sites of damage where ATP/ADP is released, little is known about the role of P2Y13 , which transcriptome data suggest is the second most expressed neurotransmitter receptor in microglia. We show that, in patch-clamp recordings in acute brain slices from mice lacking P2Y13 receptors, the THIK-1 K+ current density evoked by ADP activating P2Y12 receptors was increased by ~50%. This increase suggested that the P2Y12 -dependent chemotaxis response should be potentiated; however, the time needed for P2Y12 -mediated convergence of microglial processes onto an ADP-filled pipette or to a laser ablation was longer in the P2Y13 KO. Anatomical analysis showed that the density of microglia was unchanged, but that they were less ramified with a shorter process length in the P2Y13 KO. Thus, chemotactic processes had to grow further and so arrived later at the target, and brain surveillance was reduced by ~30% in the knock-out. Blocking P2Y12 receptors in brain slices from P2Y13 KO mice did not affect surveillance, demonstrating that tonic activation of these high-affinity receptors is not needed for surveillance. Strikingly, baseline interleukin-1β release was increased fivefold while release evoked by LPS and ATP was not affected in the P2Y13 KO, and microglia in intact P2Y13 KO brains were not detectably activated. Thus, P2Y13 receptors play a role different from that of their close relative P2Y12 in regulating microglial morphology and function
Communicating with patients and the public about COVID‐19 vaccine safety: recommendations from the Collaboration on Social Science and Immunisation
Implementation of back to living well, a community-based program for the tertiary prevention of low back pain: a study protocol.
BACKGROUND: The current literature supports the effectiveness of exercise, education, and self-management interventions for the long-term management of persistent low back pain. However, there is significant uncertainty about the implementation of interventions related to barriers, facilitators, and patient's preferences. This study will evaluate the Back to Living Well program implementation from a participant and organizational perspective. More specifically we address the following objectives: 1) identify program barriers and facilitators from participants' perspectives, 2) identify factors related to program, personal and contextual factors that contribute to negative and positive outcomes, and outcome trajectories, 3) identify factors influencing participants' selection of an in-person or e-health program, and 4) evaluate program specific barriers and facilitators from the organization and care delivery perspectives. METHODS: This study will utilize a mixed-method convergent design including a longitudinal cohort strand and a longitudinal qualitative interview strand. The RE-AIM framework will be used to assess program implementation. Participants (n = 90, 1:1: in person or virtual) who choose to register in the program as well as staff (n = 10 to 15) involved in the delivery of the program will be invited to participate. Participants will participate in a 12-week physical activity, education, and self-management program. Implementation outcomes will be measured at 3-, 6-, 12-months, and six months after the end of the follow-ups. Interview scripts and directed content analysis will be constructed based on the Theoretical Domains Framework and the Neuromatrix Model of Pain, Theoretical Domains Framework. Staff interviews will be constructed and analyzed using the Consolidated Framework for Implementation Research. Participants will also complete pain, disability, quality of life and psychological questionnaires, wear an activity tracker at all time points, and complete weekly pain and activity limitation questions using a mobile application. DISCUSSION: The study results will provide evidence to inform potential future implementation of the program. An effective, appropriately targeted, and well implemented exercise program for the long-term management (i.e., tertiary prevention) of LBP could minimize the burden of the condition on patients, the health care system and society. TRIAL REGISTRATION: ClinicalTrials.gov NCT05929846. This (Registration Date: July 3 2023) study has been approved by the Hamilton Integrated Research Ethics Board Project ID#15,354
- …
