228 research outputs found
Novel Influenza Virus NS1 Antagonists Block Replication and Restore Innate Immune Function
The innate immune system guards against virus infection through a variety of mechanisms including mobilization of the host interferon system, which attacks viral products mainly at a posttranscriptional level. The influenza virus NS1 protein is a multifunctional facilitator of virus replication, one of whose actions is to antagonize the interferon response. Since NS1 is required for efficient virus replication, it was reasoned that chemical inhibitors of this protein could be used to further understand virus-host interactions and also serve as potential new antiviral agents. A yeast-based assay was developed to identify compounds that phenotypically suppress NS1 function. Several such compounds exhibited significant activity specifically against influenza A virus in cell culture but had no effect on the replication of another RNA virus, respiratory syncytial virus. Interestingly, cells lacking an interferon response were drug resistant, suggesting that the compounds block interactions between NS1 and the interferon system. Accordingly, the compounds reversed the inhibition of beta interferon mRNA induction during infection, which is known to be caused by NS1. In addition, the compounds blocked the ability of NS1 protein to inhibit double-stranded RNA-dependent activation of a transfected beta interferon promoter construct. The effects of the compounds were specific to NS1, because they had no effect on the ability of the severe acute respiratory syndrome coronavirus papainlike protease protein to block beta interferon promoter activation. These data demonstrate that the function of NS1 can be modulated by chemical inhibitors and that such inhibitors will be useful as probes of biological function and as starting points for clinical drug development
Compliance amongst asthma patients registered for an asthma disease risk-management programme in South Africa
Early Vegetation Development on an Exposed Reservoir: Implications for Dam Removal
The 4-year drawdown of Horsetooth Reservoir, Colorado, for dam maintenance, provides a case study analog of vegetation response on sediment that might be exposed from removal of a tall dam. Early vegetation recovery on the exposed reservoir bottom was a combination of (1) vegetation colonization on bare, moist substrates typical of riparian zones and reservoir sediment of shallow dams and (2) a shift in moisture status from mesic to the xeric conditions associated with the pre-impoundment upland position of most of the drawdown zone. Plant communities changed rapidly during the first four years of exposure, but were still substantially different from the background upland plant community. Predictions from the recruitment box model about the locations of Populus deltoides subsp. monilifera (plains cottonwood) seedlings relative to the water surface were qualitatively confirmed with respect to optimum locations. However, the extreme vertical range of water surface elevations produced cottonwood seed regeneration well outside the predicted limits of drawdown rate and height above late summer stage. The establishment and survival of cottonwood at high elevations and the differences between the upland plant community and the community that had developed after four years of exposure suggest that vegetation recovery following tall dam removal will follow a trajectory very different from a simple reversal of the response to dam construction, involving not only long time scales of establishment and growth of upland vegetation, but also possibly decades of persistence of legacy vegetation established during the reservoir to upland transition
Recommended from our members
Implications of heavy-ion-induced satellite x-ray emission. II. Production of K and L x rays by 0. 9 to 2. 6 MeV/u Ar ions in thick targets of V, Cu, Nb, Ta, and Pt
Cross sections are reported for x-ray production in targets of /sup 23/V, /sup 29/Cu, /sup 41/Nb, /sup 73/Ta, and /sup 78/Pt by /sup 40/Ar ions of 36.0, 56.4, 76.6, and 103 MeV. Because the targets were relatively thick, approx. 1 mg/cm/sup 2/, the data were corrected, using a novel approach, for projectile energy loss and x-ray attenuation in the targets. The cross sections so analyzed are compared with the predictions of the first Born approximation as well as with those of a more extensive treatment which includes energy loss, Coulomb deflection, perturbed stationary-state, and relativistic effects. The significant discrepancies between the data and this latter theory are atrributed primarily to the influence of multiple ionization on the x-ray emission probabilities
Recommended from our members
Electromagnetic Decay of Giant Resonances
Coincidence experiments were done to investigate the photon and neutron emission from the giant resonance regions of /sup 208/Pb and /sup 90/Zr using the ORNL Spin Spectrometer, a 72-segment NaI detector system. We have determined the total gamma-decay probability, the ground-state gamma branching ratio, and the branching ratios to a number of low-lying states as a function of excitation energy in /sup 208/Pb to approx.15 MeV. Similar data were also obtained on /sup 90/Zr. The total yield of ground-state E2 gamma radiation in /sup 208/Pb and the comparative absence of such radiation in /sup 90/Zr can only be understood if decay of compound (damped) states is considered. Other observations in /sup 208/Pb include the absence of a significant branch from the giant quadrupole resonance (GQR) to the 3/sup -/ state at 2.6 MeV, a strong branch to a 3/sup -/ state at 4.97 MeV from the same region, and transitions to various 1/sup -/ states between 5 to 7 MeV from the E* approx. 14 MeV region (EO resonance)
Prehospital critical care for out-of-hospital cardiac arrest: An observational study examining survival and a stakeholder-focused cost analysis
© 2016 The Author(s). Background: Survival rates from out-of-hospital cardiac arrest (OHCA) remain low, despite remarkable efforts to improve care. A number of ambulance services in the United Kingdom (UK) have developed prehospital critical care teams (CCTs) which attend critically ill patients, including OHCA. However, current scientific evidence describing CCTs attending OHCA is sparse and research to date has not demonstrated clear benefits from this model of care. Methods: This prospective, observational study will describe the effect of CCTs on survival from OHCA, when compared to advanced-life-support (ALS), the current standard of prehospital care in the UK. In addition, we will describe the association between individual critical care interventions and survival, and also the costs of CCTs for OHCA. To examine the effect of CCTs on survival from OHCA, we will use routine Utstein variables data already collected in a number of UK ambulance trusts. We will use propensity score matching to adjust for imbalances between the CCT and ALS groups. The primary outcome will be survival to hospital discharge, with the secondary outcome of survival to hospital admission. We will record the critical care interventions delivered during CCT attendance at OHCA. We will describe frequencies and aim to use multiple logistic regression to examine possible associations with survival. Finally, we will undertake a stakeholder-focused cost analysis of CCTs for OHCA. This will utilise a previously published Emergency Medical Services (EMS) cost analysis toolkit and will take into account the costs incurred from use of a helicopter and the proportion of these costs currently covered by charities in the UK. Discussion: Prehospital critical care for OHCA is not universally available in many EMS. In the UK, it is variable and largely funded through public donations to charities. If this study demonstrates benefit from CCTs at an acceptable cost to the public or EMS commissioners, it will provide a rationale to increase funding and service provision. If no clinical benefit is found, the public and charities providing these services can consider concentrating their efforts on other areas of prehospital care. Trial registration: ISRCTN registry ID ISRCTN18375201
Pediatric appendicitis rupture rate: a national indicator of disparities in healthcare access
BACKGROUND: The U.S. National Healthcare Disparities Report is a recent effort to measure and monitor racial and ethnic disparities in health and healthcare. The Report is a work in progress and includes few indicators specific to children. An indicator worthy of consideration is racial/ethnic differences in the rate of bad outcomes for pediatric acute appendicitis. Bad outcomes for this condition are indicative of poor access to healthcare, which is amenable to social and healthcare policy changes. METHODS: We analyzed the KID Inpatient Database, a nationally representative sample of pediatric hospitalization, to compare rates of appendicitis rupture between white, African American, Hispanic and Asian children. We ran weighted logistic regression models to obtain national estimates of relative odds of rupture rate for the four groups, adjusted for developmental, biological, socioeconomic, health services and hospital factors that might influence disease outcome. RESULTS: Rupture was a much more burdensome outcome than timely surgery and rupture avoidance. Rupture cases had 97% higher hospital charges and 175% longer hospital stays than non-rupture cases on average. These burdens disproportionately affected minority children, who had 24% – 38% higher odds of appendicitis rupture than white children, adjusting for age and gender. These differences were reduced, but remained significant after adjusting for other factors. CONCLUSION: The racial/ethnic disparities in pediatric appendicitis outcome are large and are preventable with timely diagnosis and surgery for all children. Furthermore, estimating this disparity using the KID survey is a relatively straightforward process. Therefore pediatric appendicitis rupture rate is a good candidate for inclusion in the National Healthcare Disparities Report. As with most other health and healthcare disparities, efforts to reduce disparities in income, wealth and access to care will most likely improve the odds of favorable outcome for this condition as well
Tight cooperation between Mot1p and NC2β in regulating genome-wide transcription, repression of transcription following heat shock induction and genetic interaction with SAGA
TATA-binding protein (TBP) is central to the regulation of eukaryotic transcription initiation. Recruitment of TBP to target genes can be positively regulated by one of two basal transcription factor complexes: SAGA or TFIID. Negative regulation of TBP promoter association can be performed by Mot1p or the NC2 complex. Recent evidence suggests that Mot1p, NC2 and TBP form a DNA-dependent protein complex. Here, we compare the functions of Mot1p and NC2βduring basal and activated transcription using the anchor-away technique for conditional nuclear depletion. Genome-wide expression analysis indicates that both proteins regulate a highly similar set of genes. Upregulated genes were enriched for SAGA occupancy, while downregulated genes preferred TFIID binding. Mot1p and NC2β depletion during heat shock resulted in failure to downregulate gene expression after initial activation, which was accompanied by increased TBP and RNA pol II promoter occupancies. Depletion of Mot1p or NC2β displayed preferential synthetic lethality with the TBP-interaction module of SAGA. Our results support the model that Mot1p and NC2β directly cooperate in vivo to regulate TBP function, and that they are involved in maintaining basal expression levels as well as in resetting gene expression after induction by stress
Deconstructing Insight: EEG Correlates of Insightful Problem Solving
Background:
Cognitive insight phenomenon lies at the core of numerous discoveries. Behavioral research indicates four salient features of insightful problem solving: (i) mental impasse, followed by (ii) restructuring of the problem representation, which leads to (iii) a deeper understanding of the problem, and finally culminates in (iv) an “Aha!” feeling of suddenness and obviousness of the solution. However, until now no efforts have been made to investigate the neural mechanisms of these constituent features of insight in a unified framework.
Methodology/Principal Findings:
In an electroencephalographic study using verbal remote associate problems, we identified neural correlates of these four features of insightful problem solving. Hints were provided for unsolved problems or after mental impasse. Subjective ratings of the restructuring process and the feeling of suddenness were obtained on trial-by-trial basis. A negative correlation was found between these two ratings indicating that sudden insightful solutions, where restructuring is a key feature, involve automatic, subconscious recombination of information. Electroencephalogram signals were analyzed in the space×time×frequency domain with a nonparametric cluster randomization test. First, we found strong gamma band responses at parieto-occipital regions which we interpreted as (i) an adjustment of selective attention (leading to a mental impasse or to a correct solution depending on the gamma band power level) and (ii) encoding and retrieval processes for the emergence of spontaneous new solutions. Secondly, we observed an increased upper alpha band response in right temporal regions (suggesting active suppression of weakly activated solution relevant information) for initially unsuccessful trials that after hint presentation led to a correct solution. Finally, for trials with high restructuring, decreased alpha power (suggesting greater cortical excitation) was observed in right prefrontal area.
Conclusions/Significance:
Our results provide a first account of cognitive insight by dissociating its constituent components and potential neural correlates
Analyzing the Impacts of Dams on Riparian Ecosystems: A Review of Research Strategies and Their Relevance to the Snake River Through Hells Canyon
River damming provides a dominant human impact on river environments worldwide, and while local impacts of reservoir flooding are immediate, subsequent ecological impacts downstream can be extensive. In this article, we assess seven research strategies for analyzing the impacts of dams and river flow regulation on riparian ecosystems. These include spatial comparisons of (1) upstream versus downstream reaches, (2) progressive downstream patterns, or (3) the dammed river versus an adjacent free-flowing or differently regulated river(s). Temporal comparisons consider (4) pre- versus post-dam, or (5) sequential post-dam conditions. However, spatial comparisons are complicated by the fact that dams are not randomly located, and temporal comparisons are commonly limited by sparse historic information. As a result, comparative approaches are often correlative and vulnerable to confounding factors. To complement these analyses, (6) flow or sediment modifications can be implemented to test causal associations. Finally, (7) process-based modeling represents a predictive approach incorporating hydrogeomorphic processes and their biological consequences. In a case study of Hells Canyon, the upstream versus downstream comparison is confounded by a dramatic geomorphic transition. Comparison of the multiple reaches below the dams should be useful, and the comparison of Snake River with the adjacent free-flowing Salmon River may provide the strongest spatial comparison. A pre- versus post-dam comparison would provide the most direct study approach, but pre-dam information is limited to historic reports and archival photographs. We conclude that multiple study approaches are essential to provide confident interpretations of ecological impacts downstream from dams, and propose a comprehensive study for Hells Canyon that integrates multiple research strategies
- …
