764 research outputs found
Simulating Male Selfish Strategy in Reproduction Dispute
We introduce into the Penna Model for biological ageing one of the possible
male mechanisms used to maximize the ability of their sperm to compete with
sperm from other males. Such a selfish mechanism increases the male
reproduction success but may decrease the survival probability of the whole
female population, depending on how it acts. We also find a dynamic phase
transition induced by the existence of an absorbing state where no selfish
males survive.Comment: 7 pages, latex including 2 eps figure
Time evolution of the Partridge-Barton Model
The time evolution of the Partridge-Barton model in the presence of the
pleiotropic constraint and deleterious somatic mutations is exactly solved for
arbitrary fecundity in the context of a matricial formalism. Analytical
expressions for the time dependence of the mean survival probabilities are
derived. Using the fact that the asymptotic behavior for large time is
controlled by the largest matrix eigenvalue, we obtain the steady state values
for the mean survival probabilities and the Malthusian growth exponent. The
mean age of the population exhibits a power law decayment. Some Monte
Carlo simulations were also performed and they corroborated our theoretical
results.Comment: 10 pages, Latex, 1 postscript figure, published in Phys. Rev. E 61,
5664 (2000
Manipulation of feeding regime alters sexual dimorphism for lifespan and reduces sexual conflict in Drosophila melanogaster
Sexual dimorphism for lifespan (SDL) is widespread, but poorly understood. A leading hypothesis, which we test here, is that strong SDL can reduce sexual conflict, by allowing each sex to maximise its sex-specific fitness. We used replicated experimental evolution lines of the fruit fly, Drosophila melanogaster, which had been maintained for over 360 generations on either unpredictable ‘Random’ or predictable ‘Regular’ feeding regimes. This evolutionary manipulation of feeding regime led to robust, enhanced SDL in Random over control, Regular lines. Enhanced SDL was associated with a significant increase in the fitness of focal males, tested with wild type females. This was due to sex-specific changes to male life history, manifested as increased early reproductive output and reduced survival. In contrast, focal female fitness, tested with wild type males, did not differ across regimes. Hence increased SDL was associated with a reduction in sexual conflict, which increased male fitness and maintained fitness in females. Differences in SDL were not associated with developmental time or developmental survival. Overall, the results showed that the expression of enhanced SDL, resulting from experimental evolution of feeding regimes, was associated with male-specific changes in life history, leading to increased fitness and reduced sexual conflict
Exact Solution of an Evolutionary Model without Ageing
We introduce an age-structured asexual population model containing all the
relevant features of evolutionary ageing theories. Beneficial as well as
deleterious mutations, heredity and arbitrary fecundity are present and managed
by natural selection. An exact solution without ageing is found. We show that
fertility is associated with generalized forms of the Fibonacci sequence, while
mutations and natural selection are merged into an integral equation which is
solved by Fourier series. Average survival probabilities and Malthusian growth
exponents are calculated indicating that the system may exhibit mutational
meltdown. The relevance of the model in the context of fissile reproduction
groups as many protozoa and coelenterates is discussed.Comment: LaTeX file, 15 pages, 2 ps figures, to appear in Phys. Rev.
Linking the subcultures of physics: Virtual empiricism and the bonding role of trust
This article draws on empirical material concerning the communication and use of knowledge in experimental physics and their relations to the culture of theoretical physics. The role that trust plays in these interactions is used to create a model of social distance between interacting theoretical and experimental cultures. This article thus seeks to reintroduce trust as a fundamental element in answering the problem of disunity in the sociology of knowledge
Microguards and micromessengers of the genome
The regulation of gene expression is of fundamental importance to maintain organismal function and integrity and requires a multifaceted and highly ordered sequence of events. The cyclic nature of gene expression is known as ‘transcription dynamics’. Disruption or perturbation of these dynamics can result in significant fitness costs arising from genome instability, accelerated ageing and disease. We review recent research that supports the idea that an important new role for small RNAs, particularly microRNAs (miRNAs), is in protecting the genome against short-term transcriptional fluctuations, in a process we term ‘microguarding’. An additional emerging role for miRNAs is as ‘micromessengers’—through alteration of gene expression in target cells to which they are trafficked within microvesicles. We describe the scant but emerging evidence that miRNAs can be moved between different cells, individuals and even species, to exert biologically significant responses. With these two new roles, miRNAs have the potential to protect against deleterious gene expression variation from perturbation and to themselves perturb the expression of genes in target cells. These interactions between cells will frequently be subject to conflicts of interest when they occur between unrelated cells that lack a coincidence of fitness interests. Hence, there is the potential for miRNAs to represent both a means to resolve conflicts of interest, as well as instigate them. We conclude by exploring this conflict hypothesis, by describing some of the initial evidence consistent with it and proposing new ideas for future research into this exciting topic
Integrating evolution into ecological modelling: accommodating phenotypic changes in agent based models.
PMCID: PMC3733718This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Evolutionary change is a characteristic of living organisms and forms one of the ways in which species adapt to changed conditions. However, most ecological models do not incorporate this ubiquitous phenomenon. We have developed a model that takes a 'phenotypic gambit' approach and focuses on changes in the frequency of phenotypes (which differ in timing of breeding and fecundity) within a population, using, as an example, seasonal breeding. Fitness per phenotype calculated as the individual's contribution to population growth on an annual basis coincide with the population dynamics per phenotype. Simplified model variants were explored to examine whether the complexity included in the model is justified. Outputs from the spatially implicit model underestimated the number of individuals across all phenotypes. When no phenotype transitions are included (i.e. offspring always inherit their parent's phenotype) numbers of all individuals are always underestimated. We conclude that by using a phenotypic gambit approach evolutionary dynamics can be incorporated into individual based models, and that all that is required is an understanding of the probability of offspring inheriting the parental phenotype
The new biology of ageing
Human life expectancy in developed countries has increased steadily for over 150 years, through improvements in public health and lifestyle. More people are hence living long enough to suffer age-related loss of function and disease, and there is a need to improve the health of older people. Ageing is a complex process of damage accumulation, and has been viewed as experimentally and medically intractable. This view has been reinforced by the realization that ageing is a disadvantageous trait that evolves as a side effect of mutation accumulation or a benefit to the young, because of the decline in the force of natural selection at later ages. However, important recent discoveries are that mutations in single genes can extend lifespan of laboratory model organisms and that the mechanisms involved are conserved across large evolutionary distances, including to mammals. These mutations keep the animals functional and pathology-free to later ages, and they can protect against specific ageing-related diseases, including neurodegenerative disease and cancer. Preliminary indications suggest that these new findings from the laboratory may well also apply to humans. Translating these discoveries into medical treatments poses new challenges, including changing clinical thinking towards broad-spectrum, preventative medicine and finding novel routes to drug development
- …
