1,071 research outputs found
High Resolution 4.7 um Keck/NIRSPEC Spectra of Protostars. I: Ices and Infalling Gas in the Disk of L1489 IRS
We explore the infrared M band (4.7 um) spectrum of the class I protostar
L1489 IRS in the Taurus Molecular Cloud. This is the highest resolution wide
coverage spectrum at this wavelength of a low mass protostar observed to date
(R=25,000; Dv=12 km/s). Many narrow absorption lines of gas phase 12CO, 13CO,
and C18O are detected, as well as a prominent band of solid 12CO. The gas phase
12CO lines have red shifted absorption wings (up to 100 km/s), likely
originating from warm disk material falling toward the central object. The
isotopes and the 12CO line wings are successfully fitted with a contracting
disk model of this evolutionary transitional object (Hogerheijde 2001). This
shows that the inward motions seen in millimeter wave emission lines continue
to within ~0.1 AU from the star. The colder parts of the disk are traced by the
prominent CO ice band. The band profile results from CO in 'polar' ices (CO
mixed with H2O), and CO in 'apolar' ices. At the high spectral resolution, the
'apolar' component is, for the first time, resolved into two distinct
components, likely due to pure CO and CO mixed with CO2, O2 and/or N2. The ices
have probably experienced thermal processing in the upper disk layer traced by
our pencil absorption beam: much of the volatile 'apolar' ices has evaporated
and the depletion factor of CO onto grains is remarkably low (~7%). This study
shows that high spectral resolution 4.7 um observations provide important and
unique information on the dynamics and structure of protostellar disks and the
evolution of ices in these disks.Comment: 11 pages, 6 figures Scheduled to appear in ApJ 568 n2, 1 April 200
Jack superpolynomials with negative fractional parameter: clustering properties and super-Virasoro ideals
The Jack polynomials P_\lambda^{(\alpha)} at \alpha=-(k+1)/(r-1) indexed by
certain (k,r,N)-admissible partitions are known to span an ideal I^{(k,r)}_N of
the space of symmetric functions in N variables. The ideal I^{(k,r)}_N is
invariant under the action of certain differential operators which include half
the Virasoro algebra. Moreover, the Jack polynomials in I^{(k,r)}_N admit
clusters of size at most k: they vanish when k+1 of their variables are
identified, and they do not vanish when only k of them are identified. We
generalize most of these properties to superspace using orthogonal
eigenfunctions of the supersymmetric extension of the trigonometric
Calogero-Moser-Sutherland model known as Jack superpolynomials. In particular,
we show that the Jack superpolynomials P_{\Lambda}^{(\alpha)} at
\alpha=-(k+1)/(r-1) indexed by certain (k,r,N)-admissible superpartitions span
an ideal {\mathcal I}^{(k,r)}_N of the space of symmetric polynomials in N
commuting variables and N anticommuting variables. We prove that the ideal
{\mathcal I}^{(k,r)}_N is stable with respect to the action of the
negative-half of the super-Virasoro algebra. In addition, we show that the Jack
superpolynomials in {\mathcal I}^{(k,r)}_N vanish when k+1 of their commuting
variables are equal, and conjecture that they do not vanish when only k of them
are identified. This allows us to conclude that the standard Jack polynomials
with prescribed symmetry should satisfy similar clustering properties. Finally,
we conjecture that the elements of {\mathcal I}^{(k,2)}_N provide a basis for
the subspace of symmetric superpolynomials in N variables that vanish when k+1
commuting variables are set equal to each other.Comment: 36 pages; the main changes in v2 are : 1) in the introduction, we
present exceptions to an often made statement concerning the clustering
property of the ordinary Jack polynomials for (k,r,N)-admissible partitions
(see Footnote 2); 2) Conjecture 14 is substantiated with the extensive
computational evidence presented in the new appendix C; 3) the various tests
supporting Conjecture 16 are reporte
Recommended from our members
Infrared, UV/VIS and Raman Spectroscopy of Comet Wild-2 Samples Returned by the Stardust Mission
Results from the preliminary examination of Stardust samples obtained using various spectroscopic methods will be presented
Expanded Vandermonde powers and sum rules for the two-dimensional one-component plasma
The two-dimensional one-component plasma (2dOCP) is a system of mobile
particles of the same charge on a surface with a neutralising background.
The Boltzmann factor of the 2dOCP at temperature can be expressed as a
Vandermonde determinant to the power . Recent advances in
the theory of symmetric and anti-symmetric Jack polymonials provide an
efficient way to expand this power of the Vandermonde in their monomial basis,
allowing the computation of several thermodynamic and structural properties of
the 2dOCP for values up to 14 and equal to 4, 6 and 8. In this
work, we explore two applications of this formalism to study the moments of the
pair correlation function of the 2dOCP on a sphere, and the distribution of
radial linear statistics of the 2dOCP in the plane
Kondo Effect in Systems with Spin Disorder
We consider the role of static disorder in the spin sector of the one- and
two-channel Kondo models. The distribution functions of the disorder-induced
effective energy splitting between the two levels of the Kondo impurity are
derived to the lowest order in the concentration of static scatterers. It is
demonstrated that the distribution functions are strongly asymmetric, with the
typical splitting being parametrically smaller than the average rms value. We
employ the derived distribution function of splittings to study the temperature
dependence of the low-temperature conductance of a sample containing an
ensemble of two-channel Kondo impurities. The results are used to analyze the
consistency of the two-channel Kondo interpretation of the zero-bias anomalies
observed in Cu/(Si:N)/Cu nanoconstrictions.Comment: 16 pages, 5 figures, REVTe
Introduction of a parenteral nutrition protocol in neonatal and pediatric age at the NPH Saint Damien pediatric hospital in Port-Au-Prince (Haiti): results from an international multidisciplinary working team
“Ruminant Placental Adaptation in Early Maternal Undernutrition: An Overview”
Correct placental development during early gestation is considered the main determinant of fetal growth in late pregnancy. A reduction in maternal nourishment occurring across the early developmental window has been linked to a wide range of pregnancy disorders affecting placental transport capacity and consequently the fetal nutrient supply line, with long-term implications for offspring health and productivity. In livestock, ruminant species specifically experience maternal undernutrition in extensive systems due to seasonal changes in food availability, with significant economic losses for the farmer in some situations. In this review, we aim to discuss the effects of reduced maternal nutrition during early pregnancy on placental development with a specific focus on ruminant placenta physiology. Different types of placental adaptation strategies were examined, also considering the potential effects on the epigenetic landscape, which is known to undergo extensive reprogramming during early mammalian development. We also discussed the involvement of autophagy as a cellular degradation mechanism that may play a key role in the placental response to nutrient deficiency mediated by mammalian target of rapamycin, named the mTOR intracellular pathway
Recommended from our members
Overview of the results of the organics PET Study of the cometary samples returned from comet Wild 2 by the Stardust mission
This presenation will provide an overview of the efforts and results produced by the Organics Preliminary Examination Team during their studies of the samples returned from comet Wild 2 by the Stardust spacecraft
Spectrally-resolved UV photodesorption of CH4 in pure and layered ices
Context. Methane is among the main components of the ice mantles of
insterstellar dust grains, where it is at the start of a rich solid-phase
chemical network. Quantification of the photon-induced desorption yield of
these frozen molecules and understanding of the underlying processes is
necessary to accurately model the observations and the chemical evolution of
various regions of the interstellar medium. Aims. This study aims at
experimentally determining absolute photodesorption yields for the CH4 molecule
as a function of photon energy. The influence of the ice composition is also
investigated. By studying the methane desorption from layered CH4:CO ice,
indirect desorption processes triggered by the excitation of the CO molecules
is monitored and quantified. Methods. Tunable monochromatic VUV light from the
DESIRS beamline of the SOLEIL synchrotron is used in the 7 - 13.6 eV (177 - 91
nm) range to irradiate pure CH4 or layers of CH4 deposited on top of CO ice
samples. The release of species in the gas phase is monitored by quadrupole
mass spectrometry and absolute photodesorption yields of intact CH4 are
deduced. Results. CH4 photodesorbs for photon energies higher than ~9.1 eV
(~136 nm). The photodesorption spectrum follows the absorption spectrum of CH4,
which confirms a desorption mechanism mediated by electronic transitions in the
ice. When it is deposited on top of CO, CH4 desorbs between 8 and 9 eV with a
pattern characteristic of CO absorption, indicating desorption induced by
energy transfer from CO molecules. Conclusions. The photodesorption of CH4 from
the pure ice in various interstellar environments is around 2.0 x 10^-3
molecules per incident photon. Results on CO-induced indirect desorption of CH4
provide useful insights for the generalization of this process to other
molecules co-existing with CO in ice mantles
- …
