850 research outputs found
Tamari Lattices and the symmetric Thompson monoid
We investigate the connection between Tamari lattices and the Thompson group
F, summarized in the fact that F is a group of fractions for a certain monoid
F+sym whose Cayley graph includes all Tamari lattices. Under this
correspondence, the Tamari lattice operations are the counterparts of the least
common multiple and greatest common divisor operations in F+sym. As an
application, we show that, for every n, there exists a length l chain in the
nth Tamari lattice whose endpoints are at distance at most 12l/n.Comment: 35page
Optical characterisation of germanium optical fibres
Semiconductor core optical fibres are currently generating great interest as they promise to be a platform for the seamless incorporation of optoelectronic functionality into a new generation of all-fibre networks [1,2]. Although recent attentions have primarily focused on silicon as the material of choice for semiconductor photonics applications, germanium has some advantages over its counterpart. For example, it has higher nonlinearity, extended infrared transparency and has recently been demonstrated as a direct band gap laser medium [3]. Here we present the first optical characterisation of a germanium core optical fibre. The fibre was fabricated using a chemical micro fluidic deposition process [1] that uses GeH4 (germane) as a precursor to deposit amorphous germanium into the hole of a silica capillary. Figure 1 (a) shows an optical microscope image of the polished end face of a germanium fibre, with a 5.6 µm core diameter, which has been completely filled with the semiconductor material. Optical transmission measurements have been conducted over the wavelength range 2 µm to 11 µm, to confirm the broad mid-infrared operational window, and the guided output at 2.4 µm, imaged using a Spiricon Pyrocam III pyroelectric array camera, is shown in Figure 1 (b). At this wavelength the optical loss has been measured to be 20 dB/cm, which is comparable to losses measured for amorphous silicon fibres in the infrared. The potential for these germanium optical fibres to be used as optical modulators and infrared detectors will be discussed
Structure of the specific combining ability between two species of Eucalyptus. I. RAPD data
International audienceWithin the context of the reciprocal recurrent selection scheme developed in 1989 by CIRAD-Fore t on Eucalyptus, RAPD essays were performed to assess the genetic diversity in the two species E. urophylla and E. grandis. The molecular markers were split into two parts: the speciÞc markers (present with di¤erent fre- quencies in the two species) and the common markers (present with similar frequencies in the two species). The study analyses the structure of genetic diversity within and between the two species of Eucalyptus. Dif- ferent genetic distances are worked out for use in pre- diction equations of the individual tree trunk volume of hybrids at 38 months. Each distance is expressed as the sum of the general genetic distance and the speciÞc genetic distance. The general genetic distance based on the double presence plus the double absence of bands seems to be an interesting co-variate to use in a factor regression model. Through this model the distance calculated between species explains the general com- bining ability (GCA) and the speciÞc combining ability (SCA) of the phenotypic character with a global coe¦c- ient of determination of 81.6
Structure of the specific combining ability between two species of Eucalyptus. II. A clustering approach and a multiplicative model
International audienceThe Eucalyptus breeding program of URPPI (a partnership between CIRAD-Fore t, Centre National de la Recherche Forestie re du Congo, and Unite dÕAforestation Industrielle du Congo) consists of a re- ciprocal recurrent selection scheme developed in the Congo between the two species Eucalyptus urophylla and Eucalyptus grandis. Two approaches are proposed in order to model and predict the speciÞc combining ability (SCA) between these species. The clustering ap- proach uses a simultaneous clustering procedure of the two species based on SCA and reveals heterotic groups coherent with the geographical origins of E. urophylla genotypes. The second approach uses a multiplicative model to partition the SCA into three multiplicative terms explaining 95% of the interactio
Tailoring the pressure-drop in multi-layered open-cell porous inconel structures
This study investigates the pressure-drop behaviour associated with airflow through bulk and structurally tailored multi-layered, open-cell porous Inconel structures over a wide airflow velocity range (0–50 m s-1). The effect of airflow velocity on the pressure-drop behaviour as a function of the sample thickness is presented and related to the flow behaviour corresponding to the relevant flow regimes (Darcy, Forchheimer, Turbulent and Postturbulent). Entrance effects are highlighted as a source of the pressure-drop increase for porous structures with air gaps, regardless of their sizes, as long as they are larger than those generated by loosely-stacked structures. The pressure-drops for gapped porous structures and the mathematical-summation of the pressure drop for the corresponding individual components, were in very good agreement, at lower airflow velocities. The potential for mass-efficient porous structures, providing a high pressure drop, was demonstrated using multiple thin porous laminates separated by air gaps
Experimental investigation of pressure-drop characteristics across multi-layer porous metal structures
This study investigates the effect of airflow (in the range of 0–70 m s-1) on the pressure-drop characteristics for a novel multi-layered, nickel-based porous metal, as a function of thickness (affected by sectioning) and density (affected by compression). In addition to generating unique data for these materials, the study highlights the need for precise pinpointing of the different flow regimes (Darcy, Forchheimer and Turbulent) in order to enable accurate determination of the permeability (K) and form drag coefficient (C) defined by the Forchheimer equation and to understand the complex dependence of length-normalised pressure drop on sample thickness
The Search for Higgs particles at high-energy colliders: Past, Present and Future
I briefly review the Higgs sector in the Standard Model and its minimal
Supersymmetric extension, the MSSM. After summarizing the properties of the
Higgs bosons and the present experimental constraints, I will discuss the
prospects for discovering these particle at the upgraded Tevatron, the LHC and
a high-energy linear collider. The possibility of studying the
properties of the Higgs particles will be then summarized.Comment: 28 pages, latex, 15 figures, talk at WHEPP VII, Allahabad, Indi
Economic Value Added and Small Businesses
Economic Value Added (EVA), a tool for creating wealth, is a leading idea in corporate finance today. Highly regarded companies like Coca-Cola and CSX have seen their market value soar since adopting EVA. The concept is straightforward; value is created when earnings exceed the cost of invested capital. Thus, EVA is rapidly gaining acceptance among large, publicly-traded corporations. However, EVA can be applied effectively to create value in small, privately-held firms, too. This article illustrates EVA's application in small, privately-held firms, examines EVA "s strengths and weaknesses, discusses ways to overcome those weaknesses, and describes specific operating, investing and financing actions small business managers can take to create wealth
A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo
Whole-cell catalysts for non-natural chemical reactions will open new routes to sustainable production of chemicals. We designed a cytochrome 'P411' with unique serine-heme ligation that catalyzes efficient and selective olefin cyclopropanation in intact Escherichia coli cells. The mutation C400S in cytochrome P450_(BM3) gives a signature ferrous CO Soret peak at 411 nm, abolishes monooxygenation activity, raises the resting-state FeIII-to-FeII reduction potential and substantially improves NAD(P)H-driven activity
Pore-scale numerical investigation of pressure drop behaviour across open-cell metal foams
The development and validation of a grid-based pore-scale numerical modelling methodology applied to five different commercial metal foam samples is described. The 3-D digital representation of the foam geometry was obtained by the use of X-ray microcomputer tomography scans, and macroscopic properties such as porosity, specific surface and pore size distribution are directly calculated from tomographic data. Pressure drop measurements were performed on all the samples under a wide range of flow velocities, with focus on the turbulent flow regime. Airflow pore-scale simulations were carried out solving the continuity and Navier–Stokes equations using a commercial finite volume code. The feasibility of using Reynolds-averaged Navier–Stokes models to account for the turbulence within the pore space was evaluated. Macroscopic transport quantities are calculated from the pore-scale simulations by averaging. Permeability and Forchheimer coefficient values are obtained from the pressure gradient data for both experiments and simulations and used for validation. Results have shown that viscous losses are practically negligible under the conditions investigated and pressure losses are dominated by inertial effects. Simulations performed on samples with varying thickness in the flow direction showed the pressure gradient to be affected by the sample thickness. However, as the thickness increased, the pressure gradient tended towards an asymptotic value
- …
