17 research outputs found
Biomass yield of silage maize, fertilizers efficiency, and soil properties under different soil-climate conditions and fertilizer treatments
We evaluated the efficiency (the netto agronomic efficiency – NAE, the physiological
efficiency – PE, and the apparent recovery efficiency – ARE) of farmyard manure (FYM) applied
alone, and together with mineral N (FYM+N), and NPK (FYM+NPK), on the biomass production
of silage maize at three localities (Caslav, Ivanovice, Lukavec) in the Czech Republic,
characterised by different soil-climate conditions. The effect of fertilizer treatment on soil
chemical properties was also analyzed. After four years of evaluation, the application of FYM
resulted in comparable biomass production as in the FYM+N, and FYM+NPK treatments,
showing the good ability of the mineralized FYM to provide enough nutrients during the growing
season. Increasing doses of applied nutrients were connected with higher biomass production.
However, no significant differences were recorded between fertilizer treatments. The efficiency
of applied nutrients was higher on soils of worst quality (sandy loamy Cambisol – Lukavec),
while lower on naturally fertile loamy degraded Chernozem (Ivanovice). But again, no significant
differences between the selected parameters were recorded. Although the application of mineral
fertilizers has not increased maize biomass yield significantly, they positively affected soil
chemical properties, mainly the soil concentration of P, K, Mg, and soil organic carbon content.
This shows the beneficial effect of the application of mineral fertilizers, especially in the Czech
Republic, where the application of mineral P and K decreased drastically during the last thirty
years
Sód jako pierwiastek zwiększający produkcyjność azotu - na przykładzie buraka cukrowego
The objective of the study was to evaluate the effect of sodium-enriched nitrogen fertilizers
against the background of pre-sowing sodium fertilization on sugar beet productivity,
including technological quality of taproots. A field experiment, completed in 2001-2003,
consisted of two main factors: (i) pre-sowing sodium application (0, 30 kg Na ha–1 in the
form of NaCl), (ii) a set of nitrogen fertilizing variants, composed of two sub-levels: one
consisting of four nitrogen rates (0, 90, 120, 150 kg N ha–1) and the other one comprising
three chemical N fertilizer forms [(i) ammonium nitrate, 34%, AN, (ii) mixture of ammonium
and sodium nitrates, 26%N + 6% Na (ASN1), (iii) mixture of ammonium and sodium
nitrates, 21%N + 13% Na (ASN2)]. Depending on a nitrogen rate, the fertilizers were applied
on two or three dates. The first N rate was applied only as ammonium nitrate. The
in-season application of nitrogen and sodium as the 2nd and the 3rd rate of nitrogen allowed
for discrimination of sodium rates, ranging from 0 to 44.2 kg Na ha–1. The effect of
soil applied sodium was significant in the 2nd and 3rd year of study. The highest yields of
taproots and sugar, despite changeable weather conditions, were harvested on the 120 kg
N ha–1 treated plot. The response of sugar beet plants to in-season applied sodium was
varied and depended on soil available sodium content and the course of weather during
the growing season. The strongest response occurred in 2003, characterized by both the
lowest amount of available soil sodium and shortage of water. The necessity of sodium
application, as a nutritional factor increasing yields of taproots and sugar, was clearly demonstrable
under low soil sodium content (< 5 mg kg–1 soil). Then, the optimum rate of
in-season applied Na in the form of ASN1 ranged from 14.8 to 29.5 kg Na ha–1. The available
sodium content, from 10 to 12 mg kg–1 soil, defined the upper limit of sodium fertilizer
application. At that sodium fertility level, 7.4 kg Na ha–1 should not be exceeded. The
highest unit N productivity, as attributed to the 90 kg N ha–1 treatment, responded positively to soil and in-season applied sodium. Therefore, it can be concluded that soil and/or
in-season applied sodium can improve productivity of unit nitrogen, provided that a nitrogen
rate will be reduced by up to 30 kg N ha–1 in comparison to its optimum rate
Dynamika wzrostu i pobierania makroskladnikow przez rzepak ozimy w zaleznosci od rodzaju nawozu i podzialu drugiej dawki azotu
Wpływ nawożenia mineralnego na plon odmian kukurydzy o rożnej wczesności
Field experiments were conducted in 2005-2007 at the Brody Experimental Station (52°26’ N; 16°17’ E) of the University of Life Sciences in Poznań with the following factors: 1) cultivars with different FAO number: 210, 240 and 260; 2) fertilization with K, Mg and Na: 0 (control), 150 kg K·ha-1, 150 kg K + 16.3 kg Mg·ha-1, 150 kg K + 16.3 kg Mg + 13.5 kg Na·ha-1; 3) Zn application: 0 (control), 1.5 kg Zn·ha-1 after sowing and 1.5 kg Zn·ha-1 at the 3-4 leaf stage. It was found that the grain yield depended more on the course of weather conditions than did plant residues yield. Maize response to potassium fertilization depended on the vegetation season. In the year favorable for the establishment of a high maize yield, simultaneous K and Mg fertilization at rates 150 and 16.3 kg·ha-1 induced a significant grain yield increase. The influence of zinc fertilization on grain yield depended both on the vegetative period and cultivar. Early maturing cultivars responded positively to Zn and the optimal date for Zn foliar application was the 3-4 leaf stage. Maize response to sodium supplementation was not detected.Doświadczenia polowe przeprowadzono w latach 2005-2007 w Stacji Doś-wiadczalnej Brody (52°26’ N; 16°17’ E), należącej do Uniwersytetu Przyrodniczego w Poz-naniu. Czynnikami doświadczalnymi były: 1) odmiany o różnej liczbie FAO: 220, 240 i 260; 2) warianty nawożenia potasem, magnezem i sodem: 0 (kontrola), 150 kg K·ha-1, 150 kg K + 16,3 kg Mg·ha-1, 150 kg K + 16,3 kg Mg + 13,5 kg Na·ha-1; 3) nawożenie cynkiem: 0 (kontrola), 1,5 kg Zn·ha-1 po siewie i 1,5 kg Zn·ha-1 w fazie 3-4 liści. Od przebiegu pogody w większym stopniu zależał plon ziarna niż masa resztek pożniwnych. Reakcja kukurydzy na zastosowane warianty nawożenia potasem zależała od sezonu wegetacyjnego. W roku sprzyjającym wysokiemu poziomowi plonowania istotny przyrost plonu ziarna zapewniało jednoczesne nawożenie kukurydzy K i Mg (180 i 27 kg·ha-1). Wpływ nawożenia kukurydzy cynkiem na plon ziarna zależał od sezonu wegetacyjnego oraz wczesności odmiany. Dodatnio na nawożenie cynkiem reagowały odmiany wcześ-niejsze, a optymalnym terminem ich dokarmiania była faza 3-4 liści. Nie stwierdzono reakcji kukurydzy na uzupełnienie sodem nawożenia mineralnego
Wpływ zróżnicowanych systemów nawożenia na wzorce akumulacji azotu w okresie wegetacji – na przykładzie buraka cukrowego
The rate of nitrogen uptake by sugar beet canopy during the growing season is a driving
factor in both dry matter production and its distribution between leaves and the storage
root. It has been hypothesized that nitrogen accumulation in both parts of the beet is
significantly affected by the regime of P and K supply to plants. This assumption has been
verified with the data obtained from a field static experiment, conducted in 2001-2003, with
eight fertilizing variants: without nitrogen (absolute control, PK), without one of the main
nutrients (KN, PN), with a reduced amount of phosphorus and potassium (N + 25% PK,
N + 50% PK) and with the recommended amounts of basic nutrients (NPK, NP*K, P* –
P in the form of PAPR). Amounts of in-season accumulated nitrogen in sugar beet parts
were measured on eight consecutive sampling dates, in two- to three-week intervals. The
general pattern of N accumulation in leaves is best described by a quadratic equation, but
follows a linear function in storage roots. The maximum rate of nitrogen accumulation
depended on years and fertilizing variants. Limited supply of nutrients to beet plants, caused
by the course of the weather or the applied fertilizers (less than 50% of the recommended
N rate and without K), was the main reason for a lower rate of nitrogen accumulation
in storage roots in the first part of the growing season. The course of absolute and
relative nitrogen uptake rates shows that in the second part of the season the sugar beet
could compensate the uptake of N from its soil resources. However, the effect of compensatory
N uptake on yield of storage roots was inconsistent. When water and nutrients
were in ample supply, e.g. in 2001, the additionally absorbed nitrogen could be used as an
indicator of the yield potential of sugar beet. Under other growth conditions, it is used mainly for restoration of leaf growth, with a different effect on the final yield of storage
roots. The quadratic trend of N accumulation in beet canopy during the growing season
reflects the crop’s N saturation status, a prerequisite of high yields of storage roots, as in
2001. The linear model, manifesting itself in years with pronounced drought, represents
a sub-optimal status of N management in sugar beet canopy, resulting in much lower yields
Wpływ zmienności koncentracji azotu w częściach buraka cukrowego w okresie wegetacji na wzorce akumulacji suchej masy
Nitrogen concentration (Nc) in leaves, in each stage of sugar beet development, is the
major factor stimulating the accumulation of dry matter in leaves, which in turn affects
the dry matter concentration in storage roots and, consequently, determines sugar beet
yields. This thesis was verified based on the data obtained from a static field experiment
conducted in 2001-2003, with eight fertilizing variants: without nitrogen (absolute control,
PK), without one of the main nutrients (KN, PN), with a reduced amount of phosphorus
and potassium (N + 25% PK, N + 50% PK) and the recommended amount of all basic
nutrients (NPK, NP*K, P* – P in the form of PAPR). Nitrogen concentrations in leaves
and storage roots of sugar beet tended to decline during the growing season, but the former
tendency adhered to a linear-plateau model while the latter corresponded to an exponential
one. This discrepancy, revealed in the second part of the season, can be considered
as an indicator of a high yield of storage roots, especially in years favorable for sugar beet
vegetation. The growth analysis allowed us to determine the time and the maximum rate
of canopy and storage root growth during the season. Irrespective of the fertilizing variant,
both organs of sugar beet reached the maximum rate of growth from 92 to 113 day
after sowing (DAS). Plants grown under conditions of ample water and nutrient supply
(2001) reached a three-fold higher rate of leaf growth than in dry years (2002, 2003). The
storage root showed much smaller differences in the absolute rate of growth. However,
the effect of fertilizing variants was stronger, especially from 92 DAS onwards. Trends of
the relative growth rate for each of the two tested plant organs were very similar. The
highest growth rate for both organs occurred in early stages of sugar beet development
and then progressively declined. Nevertheless, only this growth parameter responded significantly during the season to the variability of Nc in both sugar beet organs. The relationships
showed that sugar beet plants could compensate the dry matter growth rate during
early stages of sugar beet development, especially in years favorable for sugar beet
growth. The impact of nitrogen concentrations in leaves on the relative storage root growth
dynamics was curvilinear in 2001 but linear in the other years, i.e., the ones when droughts
were frequent. At the same time, the relationship between Nc and storage root fraction was
always linear. This type of a relationship clearly demonstrates the natural conservatism of
the storage root to its variable nitrogen concentration during the growing season.Koncentracja azotu w liściach buraka cukrowego w każdej fazie rozwoju rośliny jest głównym czynnikiem wpływającym na tempo akumulacji suchej masy liści, tym samym na koncentrację składnika w korzeniu spichrzowym, a w konsekwencji kształtującym dynamikę jego wzrostu. Tak sformułowana teza została zweryfikowana na podstawie danych uzyskanych w doświadczeniu polowym, statycznym, prowadzonym w latach 2001-2003, z ośmioma wariantami nawozowymi: bez azotu (kontrola absolutna, PK), bez jednego głównego makroskładnika (NK, NP), ze zredukowana dawką P i K (N + 25% PK; N + 50% PK) oraz z zalecaną dawką składników (NPK, NP*K, P* — P w nawozie fosforowym, tzw. wzbogaconym). W okresie wegetacji zawartość azotu w liściach i korzeniu spichrzowym buraka wykazywała trendy spadkowe, lecz ujawniające się odmiennie, odpowiednio jako model liniowo-plateau i potęgowy. Niezgodność ta, pojawiająca się w drugiej części sezonu, może być traktowana jako wskaźnik dużego plonu korzeni, zwłaszcza w latach optymalnych dla wegetacji buraka cukrowego. Zastosowana analiza wzrostowa pozwoliła określić termin i wartość maksymalnej szybkości wzrostu liści i korzeni w okresie wegetacji. Niezależnie od wariantu nawozowego, maksymalne wartości wzrostu obu organów wystąpiły w okresie od 92. do 113. dnia od siewu. Buraki cukrowe rosnące w warunkach optymalnego zaopatrzenia w wodę (2001) osiągnęły 3-krotnie większą szybkość wzrostu liści niż w latach z suszą (2002, 2003). W korzeniach spichrzowych wykazano znacznie mniejsze różnice wskaźnika, jakim jest absolutna szybkości wzrostu. Jednakże ujawnił się dużo większy wpływ wariantów nawozowych, zwłaszcza w drugiej części sezonu wegetacyjnego. Trendy przyrostu suchej masy, rozpatrywane oddzielnie dla obu organów buraka, były bardzo podobne. Maksymalne wartości wystąpiły w początkowym okresie wegetacji, podlegając następnie stopniowemu spadkowi. Jednakże tylko ten wskaźnik wzrostu wykazał istotny związek z koncentracją azotu w obu częściach buraka cukrowego. Zależności korelacyjne wykazały, że rośliny były w stanie kompensować szybkość wzrostu w początkowym okresie wegetacji, zwłaszcza w roku o optymalnym przebiegu pogody (2001). Wpływ koncentracji azotu w liściach na względną dynamikę wzrostu masy korzenia spichrzowego okazał się krzywoliniowy w roku 2001 i prostoliniowy w pozostałych latach (z częstymi suszami). Natomiast relacje między koncentracją azotu w korzeniu spichrzowym i jego udziałem w biomasie całkowitej buraka były zawsze liniowe. Ten model relacji podkreśla naturalny konserwatyzm korzenia spichrzowego w reakcji na zmienną koncentrację azotu w tej części rośliny w okresie wegetacji
SUGAR BEET RESPONSE TO BALANCED NITROGEN FERTILIZATION WITH PHOSPHORUS AND POTASSIUM PART I. DYNAMICS OF BEET YIELD DEVELOPMENT
Abstract BARLOG, P., W. GRZEBISZ, K. PEPLINSKI and W. SZCZEPANIAK, 2013. Sugar beet response to balanced nitrogen fertilization with phosphorus and potassium. Part I. Dynamics of beet yield development. Bulg. J. Agric. Sci., 19: 1311-1318 The objective of the conducted study was to determine the effect of various levels of P, K under the background of constant N rate on dynamics of sugar beet root yield. The field trial, arranged as a factorial design, was consisted of eight treatments: N 0 P 0 K 0 ; N 0 P 1 K 1 ; N 1 P 0 K 1 ; N 1 P 1 K 0 ; N 1 P 0.25 K 0.25 ; N 1 P 0.5 K 1 ; N 1 P 1 K 1 and N 1 P 1 K 1 +Ca; where 1 is recommended level of N, P, K application and Ca means that phosphorus applied as partially acidulated phosphoric rock (PAPR). The in-season yield sampling was conducted at 92, 113, 134, 155 and 175 th day after sowing. The highest degree of yield potential realization revealed in the year with favourable weather conditions. The highest yield was harvested on the plot fertilized with N 1 P 1 K 1 +Ca. In years with extended drought, sugar beet achieved the maximum yield in the treatment N 1 P 0.25 K 0.25 . Phosphorus revealed as the key yield forming factors, i.e., limiting N unit productivity. The maximum productivity of N occurred in treatments with full P rate, especially when P fertilizer was applied as the PAPR. However, phosphorus yield forming action depended on weather conditions in the mead-season and P fertilizer rate. The first factor, affecting N and K supply to sugar beet during the mead-season, was responsible for the size of the beetroot, considered as the sugar storage. Any drought, negatively impacting its size, in turn decreases P yield forming action, which appears in the late-season. The maximal exploitation of sugar beet yielding potential is, therefore, possible provided water is not a factor limiting sugar beet growth in the mead-season and P in late-season. Nevertheless, in farming practice, the lack of favourable growth conditions should not be a reason for development a sugar beet fertilizing strategy, based on reduced P and K rates
