2,627 research outputs found
Transport and dynamics on open quantum graphs
We study the classical limit of quantum mechanics on graphs by introducing a
Wigner function for graphs. The classical dynamics is compared to the quantum
dynamics obtained from the propagator. In particular we consider extended open
graphs whose classical dynamics generate a diffusion process. The transport
properties of the classical system are revealed in the scattering resonances
and in the time evolution of the quantum system.Comment: 42 pages, 13 figures, submitted to PR
Stochastic Stability: a Review and Some Perspectives
A review of the stochastic stability property for the Gaussian spin glass
models is presented and some perspectives discussed.Comment: 12 pages, typos corrected, references added. To appear in Journal of
Statistical Physics, Special Issue for the 100th Statistical Mechanics
Meetin
Criticality in diluted ferromagnet
We perform a detailed study of the critical behavior of the mean field
diluted Ising ferromagnet by analytical and numerical tools. We obtain
self-averaging for the magnetization and write down an expansion for the free
energy close to the critical line. The scaling of the magnetization is also
rigorously obtained and compared with extensive Monte Carlo simulations. We
explain the transition from an ergodic region to a non trivial phase by
commutativity breaking of the infinite volume limit and a suitable vanishing
field. We find full agreement among theory, simulations and previous results.Comment: 23 pages, 3 figure
Morphological variation of the newly confirmed population of the javelin sand boa, Eryx jaculus (Linnaeus, 1758) (Serpentes, erycidae) in Sicily, Italy
The presence of the Javelin sand boa in Sicily has recently been confirmed. Here the morphological characters and sexual dimorphism of the Sicilian population of Eryx jaculus are presented. Seven meristic and six metric characters in 96 specimens from Sicily were examined. The results show that tail length, snout-vent length, the distance between nostrils and the number of ventral and subcaudal scales are different between sexes. The characters found in the Sicilian population of the Javelin sand boa resemble those of the African population (ssp. jaculus) rather than the Eurasian population (ssp. turcicus), but biomolecular studies are necessary to understand its taxonomic identity
A Hebbian approach to complex network generation
Through a redefinition of patterns in an Hopfield-like model, we introduce
and develop an approach to model discrete systems made up of many, interacting
components with inner degrees of freedom. Our approach clarifies the intrinsic
connection between the kind of interactions among components and the emergent
topology describing the system itself; also, it allows to effectively address
the statistical mechanics on the resulting networks. Indeed, a wide class of
analytically treatable, weighted random graphs with a tunable level of
correlation can be recovered and controlled. We especially focus on the case of
imitative couplings among components endowed with similar patterns (i.e.
attributes), which, as we show, naturally and without any a-priori assumption,
gives rise to small-world effects. We also solve the thermodynamics (at a
replica symmetric level) by extending the double stochastic stability
technique: free energy, self consistency relations and fluctuation analysis for
a picture of criticality are obtained
Steady-state conduction in self-similar billiards
The self-similar Lorentz billiard channel is a spatially extended
deterministic dynamical system which consists of an infinite one-dimensional
sequence of cells whose sizes increase monotonically according to their
indices. This special geometry induces a nonequilibrium stationary state with
particles flowing steadily from the small to the large scales. The
corresponding invariant measure has fractal properties reflected by the
phase-space contraction rate of the dynamics restricted to a single cell with
appropriate boundary conditions. In the near-equilibrium limit, we find
numerical agreement between this quantity and the entropy production rate as
specified by thermodynamics
- …
