484 research outputs found
Tunable graphene system with two decoupled monolayers
The use of two truly two-dimensional gapless semiconductors, monolayer and bilayer graphene, as current-carrying components in field-effect transistors (FET) gives access to new types of nanoelectronic devices. Here, we report on the development of graphene-based FETs containing two decoupled graphene monolayers manufactured from a single one folded during the exfoliation process. The transport characteristics of these newly-developed devices differ markedly from those manufactured from a single-crystal bilayer. By analyzing Shubnikov-de Haas oscillations, we demonstrate the possibility to independently control the carrier densities in both layers using top and bottom gates, despite there being only a nanometer scale separation between them
Enhanced Shot Noise in Tunneling through a Stack of Coupled Quantum Dots
We have investigated the noise properties of the tunneling current through
vertically coupled self-assembled InAs quantum dots. We observe
super-Poissonian shot noise at low temperatures. For increased temperature this
effect is suppressed. The super-Poissonian noise is explained by capacitive
coupling between different stacks of quantum dots
Mobilities and Scattering Times in Decoupled Graphene Monolayers
Folded single layer graphene forms a system of two decoupled monolayers being
only a few Angstroms apart. Using magnetotransport measurements we investigate
the electronic properties of the two layers conducting in parallel. We show a
method to obtain the mobilities for the individual layers despite them being
jointly contacted. The mobilities in the upper layer are significantly larger
than in the bottom one indicating weaker substrate influence. This is confirmed
by larger transport and quantum scattering times in the top layer. Analyzing
the temperature dependence of the Shubnikov-de Haas oscillations effective
masses and corresponding Fermi velocities are obtained yielding reduced values
down to 66 percent in comparison to monolayers.Comment: 4 pages, 5 figure
Low-temperature hysteresis in the field effect of bilayer graphene
Hysteresis in the field effect of bilayer graphene is observed at a low temperature. We attribute this effect to charge traps in the substrate. When the sweep rate of the back-gate voltage is increased to higher values, the hysteresis becomes more pronounced. By measuring the hysteresis in the field effect, the lifetime of the charge traps is estimated as 16.9 min. It is shown that the influence of charge traps on graphene is strongly affected by a magnetic field. Above 5 T the hysteresis remains constant. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.DFG/EXC/QUES
Phenotype-specific association of the TGFBR3 locus with nonsyndromic cryptorchidism
PURPOSE:
Based on a genome-wide association study of testicular dysgenesis syndrome showing a possible association with TGFBR3, we analyzed data from a larger, phenotypically restricted cryptorchidism population for potential replication of this signal.
MATERIALS AND METHODS:
We excluded samples based on strict quality control criteria, leaving 844 cases and 2,718 controls of European ancestry that were analyzed in 2 separate groups based on genotyping platform (ie Illumina® HumanHap550, version 1 or 3, or Human610-Quad, version 1 BeadChip in group 1 and Human OmniExpress 12, version 1 BeadChip platform in group 2). Analyses included genotype imputation at the TGFBR3 locus, association analysis of imputed data with correction for population substructure, subsequent meta-analysis of data for groups 1 and 2, and selective genotyping of independent cases (330) and controls (324) for replication. We also measured Tgfbr3 mRNA levels and performed TGFBR3/betaglycan immunostaining in rat fetal gubernaculum.
RESULTS:
We identified suggestive (p ≤ 1× 10(-4)) association of markers in/near TGFBR3, including rs9661103 (OR 1.40; 95% CI 1.20, 1.64; p = 2.71 × 10(-5)) and rs10782968 (OR 1.58; 95% CI 1.26, 1.98; p = 9.36 × 10(-5)) in groups 1 and 2, respectively. In subgroup analyses we observed strongest association of rs17576372 (OR 1.42; 95% CI 1.24, 1.60; p = 1.67 × 10(-4)) with proximal and rs11165059 (OR 1.32; 95% CI 1.15, 1.38; p = 9.42 × 10(-4)) with distal testis position, signals in strong linkage disequilibrium with rs9661103 and rs10782968, respectively. Association of the prior genome-wide association study signal (rs12082710) was marginal (OR 1.13; 95% CI 0.99, 1.28; p = 0.09 for group 1), and we were unable to replicate signals in our independent cohort. Tgfbr3/betaglycan was differentially expressed in wild-type and cryptorchid rat fetal gubernaculum.
CONCLUSIONS:
These data suggest complex or phenotype specific association of cryptorchidism with TGFBR3 and the gubernaculum as a potential target of TGFβ signaling
Measurement of finite-frequency current statistics in a single-electron transistor
Electron transport in nano-scale structures is strongly influenced by the
Coulomb interaction which gives rise to correlations in the stream of charges
and leaves clear fingerprints in the fluctuations of the electrical current. A
complete understanding of the underlying physical processes requires
measurements of the electrical fluctuations on all time and frequency scales,
but experiments have so far been restricted to fixed frequency ranges as
broadband detection of current fluctuations is an inherently difficult
experimental procedure. Here we demonstrate that the electrical fluctuations in
a single electron transistor (SET) can be accurately measured on all relevant
frequencies using a nearby quantum point contact for on-chip real-time
detection of the current pulses in the SET. We have directly measured the
frequency-dependent current statistics and hereby fully characterized the
fundamental tunneling processes in the SET. Our experiment paves the way for
future investigations of interaction and coherence induced correlation effects
in quantum transport.Comment: 7 pages, 3 figures, published in Nature Communications (open access
Leaving A Bequest: Living on Through Charitable Gifts
Decisions taken in respect of the disposition of possessions often parallel a life transition or change in identity. In this article, we examine decisions taken in a will where disposition can be viewed not as a representation of the identities an individual wishes to shed, but rather as the continuation of those for which the deceased wishes to be remembered. We examine the meaning that such donors ascribe to their giving and the rich pattern of utility it offers both the individual and those he or she will ultimately leave behind. Using grounded theory, we report the results of 20 in-depth interviews conducted with individuals who had pledged a bequest to at least one U.K. charity. We demonstrate how the bequest gift is laden with symbolism, a function of the reminiscences of the individual and reflective of the need for the self to live on and achieve a degree of symbolic immortality
- …
