1,158 research outputs found
Angular momentum projection of cranked Hartree-Fock states: Application to terminating bands in A~44 nuclei
We present the first systematic calculations based on the angular-momentum
projection of cranked Slater determinants. We propose the Iy --> I scheme, by
which one projects the angular momentum I from the 1D cranked state constrained
to the average spin projection of =I. Calculations performed for the
rotational band in 46Ti show that the AMP Iy --> I scheme offers a natural
mechanism for correcting the cranking moment of inertia at low-spins and
shifting the terminating state up by ~2 MeV, in accordance with data. We also
apply this scheme to high-spin states near the band termination in A~44 nuclei,
and compare results thereof with experimental data, shell-model calculations,
and results of the approximate analytical symmetry-restoration method proposed
previously.Comment: 9 RevTeX pages, 8 EPS figures, submitted to Physical Review
Study of Deformation Effects in the Charged Particle Emission from 46Ti
The 46Ti compound nucleus, as populated by the fusion-evaporation reaction
27Al + 19F at the bombarding energy of 144 MeV, has been investigated by
charged particle spectroscopy using the multidetector array ICARE at the
VIVITRON tandem facility of the IReS (Strasbourg). The light charged particles
have been measured in coincidence with evaporation residues. The CACARIZO code,
a Monte Carlo implementation of the statistical-model code CASCADE, has been
used to calculate the spectral shapes of evaporated alpha-particles which are
compared with the experimental spectra. This comparison indicates the possible
signature of large deformations of the compound nucleus.Comment: 6 pages, 4 figures, Proceedings od the Zakopane 20004 Symposium, to
be published in Acta Phys. Pol. B36 (2005
Large Deformation Effects in the N = Z 44Ti Compound Nucleus
The N = Z 44Ti* nucleus has been populated in Fusion Evaporation process at
very high excitation energies and angular momenta using two entrance channels
with different mass-asymmetry. The deformation effects in the rapidly rotating
nuclei have been investigated through the energy distribution of the
alpha-particle combined to statistical-model calculations. In the case of
low-multiplicity events, the ratio between first particle emitted has been
measured and shows significant disagreement with the predictions of the
statistical-model. This may explain The large discrepancies observed in proton
energy spectra measured in previous experiments performed in the same mass
region.Comment: Proceeding of the 10th International Conference on Nuclear Reaction
Mechanisms, Varenna Italy, June 9-13 2003. 10 pages, 6 figures, 1 tabl
High-spin states and band terminations in v 49
High-spin states in 49 V have been studied through the 28 Si(28 Si, α3p) reaction using the EUROBALL γ-ray detector array. The 49 V level scheme has been extended up to 13.1 MeV including 21 new states. Both negative and positive parity states have been interpreted in the framework of theShell Model. The 27/2− and the 31/2+ band termination states have been observed in agreement with theoretical predictions.Fil: Rodrigues Ferreira Maltez, Dario Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia Física (Centro Atómico Constituyentes). Proyecto Tandar; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Hojman, Daniel Leonardo. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia Física (Centro Atómico Constituyentes). Proyecto Tandar; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lenzi, Silvia M.. Istituto Nazionale Di Fisica Nucleare.; Italia. Università di Padova; ItaliaFil: Cardona, Maria Angelica. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia Física (Centro Atómico Constituyentes). Proyecto Tandar; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: Fernea, Enrico. Università di Padova; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Axiotis, M.. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Beck, C.. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: Bednarczyk, P.. Polish Academy of Sciences; ArgentinaFil: Bizzetti, P. G.. Università di Padova; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Bizzetti Sona, A. M.. Università di Padova; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Della Vedova, F.. Università di Padova; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Grebosz, J.. Polish Academy of Sciences; ArgentinaFil: Haas, F.. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: Kmiecik, M.. Polish Academy of Sciences; ArgentinaFil: Maj, A.. Polish Academy of Sciences; ArgentinaFil: Męczyński, W.. Polish Academy of Sciences; ArgentinaFil: Napoli, D. R.. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Nespolo, M.. Università di Padova; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Papka, P.. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: Sánchez i Zafra, A.. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: Styczen, J.. Polish Academy of Sciences; ArgentinaFil: Thummerer, S.. Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung; AlemaniaFil: Ziębliński, M.. Polish Academy of Sciences; Argentin
Binary reaction decays from 24Mg+12C
Charged particle and gamma decays in 24Mg* are investigated for excitation
energies where quasimolecular resonances appear in 12C+12C collisions. Various
theoretical predictions for the occurence of superdeformed and hyperdeformed
bands associated with resonance structures with low spin are discussed within
the measured 24Mg* excitation energy region. The inverse kinematics reaction
24Mg+12C is studied at E_lab(24Mg) = 130 MeV, an energy which enables the
population of 24Mg states decaying into 12C+12C resonant break-up states.
Exclusive data were collected with the Binary Reaction Spectrometer in
coincidence with EUROBALL IV installed at the VIVITRON Tandem facility at
Strasbourg. Specific structures with large deformation were selectively
populated in binary reactions and their associated gamma decays studied.
Coincident events associated with inelastic and alpha-transfer channels have
been selected by choosing the excitation energy or the entry point via the
two-body Q-values. The analysis of the binary reaction channels is presented
with a particular emphasis on 24Mg-gamma, 20Ne-gamma and 16O-gamma
coincidences. New information (spin and branching ratios) is deduced on
high-energy states in 24Mg and 16O, respectively.Comment: 27 pages, 8 figures, 1 tabl
Discrimination of papillary thyroid cancer from non-cancerous thyroid tissue based on lipid profiling by mass spectrometry imaging
Introduction: The distinction of papillary thyroid carcinomas from benign thyroid lesions has important implication for clinical management. Classification based on histopathological features can be supported by molecular biomarkers, including lipidomic signatures, identified with the use of high-throughput mass spectrometry techniques. Formalin fixation is a standard procedure for stabilization and preservation of tissue samples, therefore this type of samples constitute highly valuable source of clinical material for retrospective molecular studies. In this study we used mass spectrometry imaging to detect lipids discriminating papillary cancer from not cancerous thyroid directly in formalin-fixed tissue sections. Material and methods: For this purpose imaging and profiling of lipids present in non-malignant and cancerous thyroid tissue specimens were conducted. High resolution MALDI-Q-Ion Mobility-TOF-MS technique was used for lipidomic analysis of formalin fixed thyroid tissue samples. Lipids were identified by the comparison of the exact molecular masses and fragmentation pathways of the protonated molecule ions, recorded during the MS/MS experiments, with LIPID MAPS database. Results: Several phosphatidylcholines (32:0, 32:1, 34:1 and 36:3), sphingomyelins (34:1 and 36:1) and phosphatidic acids (36:2 and 36:3) were detected and their abundances were significantly higher in cancerous tissue compared to non-cancerous tissue. The same lipid species were detected in formalin-fixed as in fresh-frozen tissue, but [M + Na]+ions were the most abundant in formalin fixed whereas [M + K]+ions were predominant in fresh tissue. Conclusions: Our results prove the viability of MALDI-MSI for analysis of lipid distribution directly in formalin-fixed tissue, and the potential for their use in the classification of thyroid diseases
GDR Feeding of the Highly-Deformed Band in 42Ca
The gamma-ray spectra from the decay of the GDR in the compound nucleus
reaction 18O+28Si at bombarding energy of 105 MeV have been measured in an
experiment using the EUROBALL IV and HECTOR arrays. The obtained experimental
GDR strength function is highly fragmented, with a low energy (10 MeV)
component, indicating a presence of a large deformation and Coriolis effects.
In addition, the preferential feeding of the highly-deformed band in 42Ca by
this GDR low energy component is observed.Comment: 6 pages, 2 figures, Proceedings of the Zakopane2004 Symposium, to be
published in Acta Phys. Pol. B36 (2005
First identification of excited states in the T = 1/2 nucleus Pd
The first experimental information about excited states in the N = Z + 1 nucleus 93Pd is presented. The experiment was performed using a 205 MeV 58Ni beam from the Vivitron accelerator at IReS, Strasbourg, impinging on a bismuth-backed 40Ca target. Gamma-rays, neutrons and charged particles emitted in the reactions were detected using the Ge detector array Euroball, the Neutron Wall liquid-scintillator array and the Euclides Si charged-particle detector system. The experimental level scheme is compared with the results of new shell model calculations which predict a coupling scheme with aligned neutron-proton pairs to greatly influence the level structure of nuclei at low excitation energies
Strong Deformation Effects in Hot Rotating 46Ti
Exotic-deformation effects in 46Ti nucleus were investigated by analysing the
high-energy gamma-ray and the alpha-particle energy spectra. One of the
experiments was performed using the charged-particle multi-detector array ICARE
together with a large volume (4"x4") BGO detector. The study focused on
simultaneous measurement of light charged particles and gamma-rays in
coincidence with the evaporation residues. The experimental data show a
signature of very large deformations of the compound nucleus in the Jacobi
transition region at the highest spins. These results are compared to data from
previous experiments performed with the HECTOR array coupled to the EUROBALL
array, where it was found that the GDR strength function is highly fragmented,
strongly indicating a presence of nuclei with very large deformation.Comment: 10 pages, 6 figures, Proceedings of the Zakopane Conference on
Nuclear Physics, to be published in Acta Phys. Pol. B (2007
Search for Fingerprints of Tetrahedral Symmetry in
Theoretical predictions suggest the presence of tetrahedral symmetry as an
explanation for the vanishing intra-band E2-transitions at the bottom of the
odd-spin negative parity band in . The present study reports on
experiment performed to address this phenomenon. It allowed to determine the
intra-band E2 transitions and branching ratios B(E2)/B(E1) of two of the
negative-parity bands in .Comment: presented by Q.T. Doan at XLII Zakopane School of Physics: Breaking
Frontiers: Submicron Structures in Physics and Biology, May 2008. 5 pages,
minor corrections. To be published in the proceeding
- …
