1,111 research outputs found
Small carbon chains in circumstellar envelopes
Observations were made for a number of carbon-rich circumstellar envelopes
using the Phoenix spectrograph on the Gemini South telescope to determine the
abundance of small carbon chain molecules. Vibration-rotation lines of the
antisymmetric stretch of C near 2040 cm (4.902 m)
have been used to determine the column density for four carbon-rich
circumstellar envelopes: CRL 865, CRL 1922, CRL 2023 and IRC +10216. We
additionally calculate the column density of C for IRC +10216, and
provide an upper limit for 5 more objects. An upper limit estimate for the
C column density is also provided for IRC+10216. A comparison of these
column densities suggest a revision to current circumstellar chemical models
may be needed
Hot methane line lists for exoplanet and brown dwarf atmospheres
We present comprehensive experimental line lists of methane (CH4) at high
temperatures obtained by recording Fourier transform infrared emission spectra.
Calibrated line lists are presented for the temperatures 300 - 1400 degC at
twelve 100 degC intervals spanning the 960 - 5000 cm-1 (2.0 - 10.4 microns)
region of the infrared. This range encompasses the dyad, pentad and octad
regions, i.e., all fundamental vibrational modes along with a number of
combination, overtone and hot bands. Using our CH4 spectra, we have estimated
empirical lower state energies (Elow in cm-1) and our values have been
incorporated into the line lists along with line positions (cm-1) and
calibrated line intensities (S' in cm molecule-1). We expect our hot CH4 line
lists to find direct application in the modeling of planetary atmospheres and
brown dwarfs.Comment: Supplementary material is provided via the Astrophysical Journal
referenc
GPRD, A Database for the Spectral Properties of Diatomic Molecules of Atmospheric Interest
A short note describing the development of a database providing factual and
numerical data on the spectral properties of diatomic molecules. This database
is available online for the overall scientific community at the following
adress: http://cfp.ist.utl.pt/radiation/Comment: 2 page
First space-borne measurements of methanol inside aged tropical biomass burning plumes using the ACE-FTS instrument
International audienceFirst measurements from space of upper tropospheric and lower stratospheric methanol profiles within aged fire plumes are reported. Elevated levels of methanol at 0–45° S from 30 September to 3 November 2004 have been measured by the high resolution infrared spectrometer ACE-FTS onboard the SCISAT satellite. Methanol volume mixing ratios higher than 4000 pptv are detected and are strongly correlated with other fire products such as CO, C2H6, and HCN. A sensitivity study of the methanol retrieval, accounting for random and systematic contributions, shows that the retrieved methanol profile is reliable from 8.5 to 16.5 km, with an accuracy of about 20% for measurements inside polluted air masses. The upper tropospheric enhancement ratio of methanol with respect to CO is estimated from the correlation plot between methanol and CO for aged tropical biomass burning plumes. This ratio is in good agreement with the ratio measured in the free troposphere (up to 12 km) by recent aircraft studies and does not suggest any secondary production of methanol by oxidation in aged biomass burning plumes
Accurate <i>ab initio</i> ro-vibronic spectroscopy of the X<sup>2</sup>∏ CCN radical using explicitly correlated methods
Explicitly correlated CCSD(T)-F12b calculations have been carried out with systematic sequences of correlation consistent basis sets to determine accurate near-equilibrium potential energy surfaces for the X<sup>2</sup>∏ and a<sup>4</sup>Σ<sup>−</sup> electronic states of the CCN radical. After including contributions due to core correlation, scalar relativity, and higher order electron correlation effects, the latter utilizing large-scale multireference configuration interaction calculations, the resulting surfaces were employed in variational calculations of the ro-vibronic spectra. These calculations also included the use of accurate spin-orbit and dipole moment matrix elements. The resulting ro-vibronic transition energies, including the Renner-Teller sub-bands involving the bending mode, agree with the available experimental data to within 3 cm<sup>−1</sup> in all cases. Full sets of spectroscopic constants are reported using the usual second-order perturbation theory expressions. Integrated absorption intensities are given for a number of selected vibronic band origins. A computational procedure similar to that used in the determination of the potential energy functions was also utilized to predict the formation enthalpy of CCN, ΔH<sub>f</sub>(0K) = 161.7 ± 0.5 kcal/mol
Decrease of carbon tetrachloride (CCl4) over 2004-2013 as inferred from global occultation measurements with ACE-FTS
In this contribution, we use infrared solar occultation measurements performed by the ACE-FTS (Atmospheric Chemistry Experiment – Fourier Transform Spectrometer) instrument onboard the SCISAT-1 Canadian satellite (Bernath et al., 2005). Since its launch in August 2003, this spectrometer has been in continuous operation with no significant degradation of its performance, and global measurements are available from late February 2004 onwards, spanning now more than a decade
CH in stellar atmospheres: an extensive linelist
The advent of high-resolution spectrographs and detailed stellar atmosphere
modelling has strengthened the need for accurate molecular data.
Carbon-enhanced metal-poor (CEMP) stars spectra are interesting objects with
which to study transitions from the CH molecule. We combine programs for
spectral analysis of molecules and stellar-radiative transfer codes to build an
extensive CH linelist, including predissociation broadening as well as newly
identified levels. We show examples of strong predissociation CH lines in CEMP
stars, and we stress the important role played by the CH features in the
Bond-Neff feature depressing the spectra of barium stars by as much as 0.2
magnitudes in the 3000 -- 5500 \AA\ range. Because of the extreme
thermodynamic conditions prevailing in stellar atmospheres (compared to the
laboratory), molecular transitions with high energy levels can be observed.
Stellar spectra can thus be used to constrain and improve molecular data.Comment: 33pages, 15 figures, accepted in A&A external data available at
http://www.astro.ulb.ac.be/~spectrotools
First space-borne measurements of methanol inside aged southern tropical to mid-latitude biomass burning plumes using the ACE-FTS instrument
International audienceFirst measurements from space of upper tropospheric and lower stratospheric methanol profiles within aged fire plumes are reported. Elevated levels of methanol at 0–45° S from 30 September to 3 November 2004 have been measured by the high resolution infrared spectrometer ACE-FTS onboard the SCISAT satellite. Methanol volume mixing ratios higher than 4000 pptv are detected and are strongly correlated with other fire products such as CO, C2H6, and HCN. A sensitivity study of the methanol retrieval, accounting for random and systematic contributions, shows that the retrieved methanol profile for a single occultation exceeds 100% error above 16.5 km, with an accuracy of about 20% for measurements inside polluted air masses. The upper tropospheric enhancement ratio of methanol with respect to CO is estimated from the correlation plot between methanol and CO for aged tropical biomass burning plumes. This ratio is in good agreement with the ratio measured in the free troposphere (up to 12 km) by recent aircraft studies and does not suggest any secondary production of methanol by oxidation in aged biomass burning plumes
- …
