5,928 research outputs found
Topological mass in seven dimensions and dualities in four dimensions
The massive topologically and self dual theories en seven dimensions are
considered. The local duality between these theories is established and the
dimensional reduction lead to the different dualities for massive antisymmetric
fields in four dimensions.Comment: 7 page
Application of large area SiPMs for the readout of a plastic scintillator based timing detector
In this study an array of eight 6 mm x 6 mm area SiPMs was coupled to the end
of a long plastic scintillator counter which was exposed to a 2.5 GeV/c muon
beam at the CERN PS. Timing characteristics of bars with dimensions 150 cm x 6
cm x 1 cm and 120 cm x 11 cm x 2.5 cm have been studied. An 8-channel SiPM
anode readout ASIC (MUSIC R1) based on a novel low input impedance current
conveyor has been used to read out and amplify SiPMs independently and sum the
signals at the end. Prospects for applications in large-scale particle physics
detectors with timing resolution below 100 ps are provided in light of the
results
Application of large area SiPMs for the readout of a plastic scintillator based timing detector
In this study an array of eight 6 mm x 6 mm area SiPMs was coupled to the end
of a long plastic scintillator counter which was exposed to a 2.5 GeV/c muon
beam at the CERN PS. Timing characteristics of bars with dimensions 150 cm x 6
cm x 1 cm and 120 cm x 11 cm x 2.5 cm have been studied. An 8-channel SiPM
anode readout ASIC (MUSIC R1) based on a novel low input impedance current
conveyor has been used to read out and amplify SiPMs independently and sum the
signals at the end. Prospects for applications in large-scale particle physics
detectors with timing resolution below 100 ps are provided in light of the
results
New Measurements and Quantitative Analysis of Electron Backscattering in the Energy Range of Neutron Beta-Decay
We report on the first detailed measurements of electron backscattering from
plastic scintillator targets, extending our previous work on beryllium and
silicon targets. The scintillator experiment posed several additional
experimental challenges associated with charging of the scintillator target,
and those challenges are addressed in detail. In addition, we quantitatively
compare the energy and angular distributions of this data, and our previous
data, with electron transport simulations based on the Geant4 and Penelope
Monte Carlo simulation codes. The Penelope simulation is found globally to give
a superior description of the data. Such information is crucial for a broad
array of weak-interaction physics experiments, where electron backscattering
can give rise to the dominant detector-related systematic uncertainty.Comment: 7 pages, 3 figure
BAMBI: blind accelerated multimodal Bayesian inference
In this paper we present an algorithm for rapid Bayesian analysis that
combines the benefits of nested sampling and artificial neural networks. The
blind accelerated multimodal Bayesian inference (BAMBI) algorithm implements
the MultiNest package for nested sampling as well as the training of an
artificial neural network (NN) to learn the likelihood function. In the case of
computationally expensive likelihoods, this allows the substitution of a much
more rapid approximation in order to increase significantly the speed of the
analysis. We begin by demonstrating, with a few toy examples, the ability of a
NN to learn complicated likelihood surfaces. BAMBI's ability to decrease
running time for Bayesian inference is then demonstrated in the context of
estimating cosmological parameters from Wilkinson Microwave Anisotropy Probe
and other observations. We show that valuable speed increases are achieved in
addition to obtaining NNs trained on the likelihood functions for the different
model and data combinations. These NNs can then be used for an even faster
follow-up analysis using the same likelihood and different priors. This is a
fully general algorithm that can be applied, without any pre-processing, to
other problems with computationally expensive likelihood functions.Comment: 12 pages, 8 tables, 17 figures; accepted by MNRAS; v2 to reflect
minor changes in published versio
Thermo-rheological-kinetical Study of Compression Molding of Fibre-reinforced Composites
International audienceTo improve the modeling of fiber reinforced composites, we present in this work numerical methods able to compute both fiber-reinforced composites deformation in squeeze flow and thermal-kinetic evolution. The rheology is given by an homogeneous orthotropic model for fiber composites which describes the anisotropy of the in-plane fiber. The thermics is then extended accounting for the reaction here formulated by the Bailleul's model. Both physics are related since the kinetic evolution as well as the temperature profile modify the rheology of the composites, giving raise to the thermo-rheological-kinetical coupling by means of the viscosity temperature dependence. A study case is presented, where the mold temperature is set to 150 • C with a composite sample at 40 • C. Thermal transfer begins as well as sample compression at constant speed. We present the evolution of the reaction, temperature and viscosity at the core and the surface. Reaction in the core of the material is much quicker than in the surface. Which means that a mapping of viscosity values is presented during the reaction modifying the mechanical response
Thermodynamics of protein folding: a random matrix formulation
The process of protein folding from an unfolded state to a biologically
active, folded conformation is governed by many parameters e.g the sequence of
amino acids, intermolecular interactions, the solvent, temperature and chaperon
molecules. Our study, based on random matrix modeling of the interactions,
shows however that the evolution of the statistical measures e.g Gibbs free
energy, heat capacity, entropy is single parametric. The information can
explain the selection of specific folding pathways from an infinite number of
possible ways as well as other folding characteristics observed in computer
simulation studies.Comment: 21 Pages, no figure
A qualitative case study of child protection issues in the Indian construction industry: investigating the security, health, and interrelated rights of migrant families
Background: Many of India’s estimated 40 million migrant workers in the construction industry migrate with their children. Though India is undergoing rapid economic growth, numerous child protection issues remain. Migrant workers and their children face serious threats to their health, safety, and well-being. We examined risk and protective factors influencing the basic rights and protections of children and families living and working at a construction site outside Delhi. Methods: Using case study methods and a rights-based model of child protection, the SAFE model, we triangulated data from in-depth interviews with stakeholders on and near the site (including employees, middlemen, and managers); 14 participants, interviews with child protection and corporate policy experts in greater Delhi (8 participants), and focus group discussions (FGD) with workers (4 FGDs, 25 members) and their children (2 FGDs, 9 members). Results: Analyses illuminated complex and interrelated stressors characterizing the health and well-being of migrant workers and their children in urban settings. These included limited access to healthcare, few educational opportunities, piecemeal wages, and unsafe or unsanitary living and working conditions. Analyses also identified both protective and potentially dangerous survival strategies, such as child labor, undertaken by migrant families in the face of these challenges. Conclusions: By exploring the risks faced by migrant workers and their children in the urban construction industry in India, we illustrate the alarming implications for their health, safety, livelihoods, and development. Our findings, illuminated through the SAFE model, call attention to the need for enhanced systems of corporate and government accountability as well as the implementation of holistic child-focused and child-friendly policies and programs in order to ensure the rights and protection of this hyper-mobile, and often invisible, population
Random walks in the space of conformations of toy proteins
Monte Carlo dynamics of the lattice 48 monomers toy protein is interpreted as
a random walk in an abstract (discrete) space of conformations. To test the
geometry of this space, we examine the return probability , which is the
probability to find the polymer in the native state after Monte Carlo
steps, provided that it starts from the native state at the initial moment.
Comparing computational data with the theoretical expressions for for
random walks in a variety of different spaces, we show that conformational
spaces of polymer loops may have non-trivial dimensions and exhibit negative
curvature characteristic of Lobachevskii (hyperbolic) geometry.Comment: 4 pages, 3 figure
- …
