92 research outputs found

    A knowledge-driven GIS modeling technique for groundwater potential mapping at the Upper Langat Basin, Malaysia.

    Get PDF
    The aim of this paper is to use a knowledge-driven expert-based geographical information system (GIS) model coupling with remote-sensing-derived parameters for groundwater potential mapping in an area of the Upper Langat Basin, Malaysia. In this study, nine groundwater storage controlling parameters that affect groundwater occurrences are derived from remotely sensed imagery, available maps, and associated databases. Those parameters are: lithology, slope, lineament, land use, soil, rainfall, drainage density, elevation, and geomorphology. Then the parameter layers were integrated and modeled using a knowledge-driven GIS of weighted linear combination. The weightage and score for each parameter and their classes are based on the Malaysian groundwater expert opinion survey. The predicted groundwater potential map was classified into four distinct zones based on the classification scheme designed by Department of Minerals and Geoscience Malaysia (JMG). The results showed that about 17% of the study area falls under low-potential zone, with 66% on moderate-potential zone, 15% with high-potential zone, and only 0.45% falls under very-high-potential zone. The results obtained in this study were validated with the groundwater borehole wells data compiled by the JMG and showed 76% of prediction accuracy. In addition statistical analysis indicated that hard rock dominant of the study area is controlled by secondary porosity such as distance from lineament and density of lineament. There are high correlations between area percentage of predicted groundwater potential zones and groundwater well yield. Results obtained from this study can be useful for future planning of groundwater exploration, planning and development by related agencies in Malaysia which provide a rapid method and reduce cost as well as less time consuming. The results may be also transferable to other areas of similar hydrological characteristics

    Flash drought prediction using deep learning

    Full text link
    Flash droughts are rapid, short-term drought events that develop within weeks, driven by factors such as low rainfall, high temperatures, and strong winds, which deplete soil moisture and stress vegetation. These events have profound agricultural, economic, and ecological impacts, yet the use of machine learning to predict flash droughts remains underexplored, hindered by challenges like imbalanced datasets and limited data. This study addresses these issues by applying Convolutional neural networks (CNNs) to predict flash droughts in Eastern Australia, a region prone to such events. We identified flash droughts from 2001 to 2022, training the model with data from 2001–2015, validating it on 2016–2017 data, and testing it on 2018–2022 data. The model’s performance was evaluated across drought duration, spatial distribution, and seasonal variability. Achieving a balanced accuracy of 80% and an Area under the curve of 93%, the CNN demonstrated strong predictive capability. However, it tended to overestimate the spatial extent of droughts, indicating areas for future improvement. These results highlight the potential of deep learning in flash drought prediction, offering valuable insights for early warning systems and drought management strategies

    Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province, Vietnam.

    Get PDF
    The main objective of this study is to assess regional landslide hazards in the Hoa Binh province of Vietnam. A landslide inventory map was constructed from various sources with data mainly for a period of 21 years from 1990 to 2010. The historic inventory of these failures shows that rainfall is the main triggering factor in this region. The probability of the occurrence of episodes of rainfall and the rainfall threshold were deduced from records of rainfall for the aforementioned period. The rainfall threshold model was generated based on daily and cumulative values of antecedent rainfall of the landslide events. The result shows that 15-day antecedent rainfall gives the best fit for the existing landslides in the inventory. The rainfall threshold model was validated using the rainfall and landslide events that occurred in 2010 that were not considered in building the threshold model. The result was used for estimating temporal probability of a landslide to occur using a Poisson probability model. Prior to this work, five landslide susceptibility maps were constructed for the study area using support vector machines, logistic regression, evidential belief functions, Bayesian-regularized neural networks, and neuro-fuzzy models. These susceptibility maps provide information on the spatial prediction probability of landslide occurrence in the area. Finally, landslide hazard maps were generated by integrating the spatial and the temporal probability of landslide. A total of 15 specific landslide hazard maps were generated considering three time periods of 1, 3, and 5 years

    Landslide susceptibility mapping at VAZ watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms

    Get PDF
    Landslide susceptibility and hazard assessments are the most important steps in landslide risk mapping. The main objective of this study was to investigate and compare the results of two artificial neural network (ANN) algorithms, i.e., multilayer perceptron (MLP) and radial basic function (RBF) for spatial prediction of landslide susceptibility in Vaz Watershed, Iran. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 136 landside locations were constructed from various sources. Then the landslide inventory map was randomly split into a training dataset 70 % (95 landslide locations) for training the ANN model and the remaining 30 % (41 landslides locations) was used for validation purpose. Nine landslide conditioning factors such as slope, slope aspect, altitude, land use, lithology, distance from rivers, distance from roads, distance from faults, and rainfall were constructed in geographical information system. In this study, both MLP and RBF algorithms were used in artificial neural network model. The results showed that MLP with Broyden–Fletcher–Goldfarb–Shanno learning algorithm is more efficient than RBF in landslide susceptibility mapping for the study area. Finally the landslide susceptibility maps were validated using the validation data (i.e., 30 % landslide location data that was not used during the model construction) using area under the curve (AUC) method. The success rate curve showed that the area under the curve for RBF and MLP was 0.9085 (90.85 %) and 0.9193 (91.93 %) accuracy, respectively. Similarly, the validation result showed that the area under the curve for MLP and RBF models were 0.881 (88.1 %) and 0.8724 (87.24 %), respectively. The results of this study showed that landslide susceptibility mapping in the Vaz Watershed of Iran using the ANN approach is viable and can be used for land use planning

    Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya

    Get PDF
    The Mugling–Narayanghat road section falls within the Lesser Himalaya and Siwalik zones of Central Nepal Himalaya and is highly deformed by the presence of numerous faults and folds. Over the years, this road section and its surrounding area have experienced repeated landslide activities. For that reason, landslide susceptibility zonation is essential for roadside slope disaster management and for planning further development activities. The main goal of this study was to investigate the application of the frequency ratio (FR), statistical index (SI), and weights-of-evidence (WoE) approaches for landslide susceptibility mapping of this road section and its surrounding area. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. A landslide inventory map was prepared using earlier reports, aerial photographs interpretation, and multiple field surveys. A total of 438 landslide locations were detected. Out these, 295 (67 %) landslides were randomly selected as training data for the modeling using FR, SI, and WoE models and the remaining 143 (33 %) were used for the validation purposes. The landslide conditioning factors considered for the study area are slope gradient, slope aspect, plan curvature, altitude, stream power index, topographic wetness index, lithology, land use, distance from faults, distance from rivers, and distance from highway. The results were validated using area under the curve (AUC) analysis. From the analysis, it is seen that the FR model with a success rate of 76.8 % and predictive accuracy of 75.4 % performs better than WoE (success rate, 75.6 %; predictive accuracy, 74.9 %) and SI (success rate, 75.5 %; predictive accuracy, 74.6 %) models. Overall, all the models showed almost similar results. The resultant susceptibility maps can be useful for general land use planning

    Identification of debris flow initiation zones using topographic model and airborne laser scanning data

    Get PDF
    Empirical multivariate predictive models represent an important tool to estimate debris flow initiation areas. Most of the approaches used in modelling debris flows propagation and deposit phases required identifying release (starting point) area or source area. Initiation areas offer a good overview to point out where field investigation should be conducted to establish a detailed hazard map. These zones, usually, are arbitrarily chosen which affect the model outputs; hence, there is a need to have accurate and automated means of identifying the release area. In addition to this, the resolution of the terrain dataset also affects the results of the detection of source areas. In this study, airborne laser scanning (ALS) data was used because of its robustness in providing detailed terrain attributes at high resolution. Primary and secondary conditioning parameters were derived from digital elevation model (DEM) as input into the modelling process. Three models were executed at different spatial resolution scales: 5, 10 and 15 m, respectively. MARSpline multivariate data mining predictive approach was implemented using morphometric indices and topographical derived parameter as independent variables. A statistics validation was calculated to estimate the optimal pixel size, 1200 randomly sample data were generated from existing inventory data. Debris flows and no-debris flows were categorized, and the transform to continuous integer (1 and 0), respectively. To achieve this, the data set was divided into two, 70% (840) for the training dataset and 30% (360) for validation. The best model was selected based on the model performance using the generalized cross validation (GCV) and the receiver operating characteristic (ROC) curve/area under curve (AUC) values. Conditioning parameters were numerically optimized to identify the arbitrarily maximum model basis function for eleven variables, using MARSplines analysis (algorithm). The three most influencing topographic parameters identified are topographic roughness index (TRI), slope angle, and specific catchment area (SCA) with the percentage values of participation in the model of 100, 93, and 86%, respectively. The chosen function appeared to describe the analysed correlation sufficiently well. Consequently, three stages of optimization were made to determine the optimized source areas is possible with 10 m pixel size, 200 maximum basis functions and 3 maximum interactions, resulting into 82% ROC train and 80% test, GCV 0.189 and 85% correlation coefficient. The result will be of great contribution to the advancement of a broad understanding of the dynamics of debris flows hazard and mitigations at regional level which; that is resourceful for comprehensive slope management for safe urban planning decision-making process and debris flow disaster management

    Identification of debris flow initiation zones using topographic model and airborne laser scanning data

    Get PDF
    Empirical multivariate predictive models represent an important tool to estimate debris flow initiation areas. Most of the approaches used in modelling debris flows propagation and deposit phases required identifying release (starting point) area or source area. Initiation areas offer a good overview to point out where field investigation should be conducted to establish a detailed hazard map. These zones, usually, are arbitrarily chosen which affect the model outputs; hence, there is a need to have accurate and automated means of identifying the release area. In addition to this, the resolution of the terrain dataset also affects the results of the detection of source areas. In this study, airborne laser scanning (ALS) data was used because of its robustness in providing detailed terrain attributes at high resolution. Primary and secondary conditioning parameters were derived from digital elevation model (DEM) as input into the modelling process. Three models were executed at different spatial resolution scales: 5, 10 and 15 m, respectively. MARSpline multivariate data mining predictive approach was implemented using morphometric indices and topographical derived parameter as independent variables. A statistics validation was calculated to estimate the optimal pixel size, 1200 randomly sample data were generated from existing inventory data. Debris flows and no-debris flows were categorized, and the transform to continuous integer (1 and 0), respectively. To achieve this, the data set was divided into two, 70% (840) for the training dataset and 30% (360) for validation. The best model was selected based on the model performance using the generalized cross validation (GCV) and the receiver operating characteristic (ROC) curve/area under curve (AUC) values. Conditioning parameters were numerically optimized to identify the arbitrarily maximum model basis function for eleven variables, using MARSplines analysis (algorithm). The three most influencing topographic parameters identified are topographic roughness index (TRI), slope angle, and specific catchment area (SCA) with the percentage values of participation in the model of 100, 93, and 86%, respectively. The chosen function appeared to describe the analysed correlation sufficiently well. Consequently, three stages of optimization were made to determine the optimized source areas is possible with 10 m pixel size, 200 maximum basis functions and 3 maximum interactions, resulting into 82% ROC train and 80% test, GCV 0.189 and 85% correlation coefficient. The result will be of great contribution to the advancement of a broad understanding of the dynamics of debris flows hazard and mitigations at regional level which; that is resourceful for comprehensive slope management for safe urban planning decision-making process and debris flow disaster management

    Coupling effect of ozone column and atmospheric infrared sounder data reveal evidence of earthquake precursor phenomena of Bam earthquake, Iran

    Get PDF
    Understanding the source mechanism of earthquakes may be the key to predict earthquakes. The testing of radioactive radiations and reactionary hypothesis of gases before and after quake events can help predict and monitor earthquake occurrence. In this study, the Atmospheric Infrared Sounder (AIRS) and the column ozone (O3) were applied to evaluate the December 26, 2003 earthquake of Bam city in western Iran. The results show that ozone concentration (column density) decreased about 30 DU and or 807 × 10E15/cm2 molecules. Using high-resolution AIRS data for the study area, we were able to discriminate gases that formed and changed before the main shock at least a day before the occurrence of the quake in Bam
    corecore