9,967 research outputs found
Reachability under Contextual Locking
The pairwise reachability problem for a multi-threaded program asks, given
control locations in two threads, whether they can be simultaneously reached in
an execution of the program. The problem is important for static analysis and
is used to detect statements that are concurrently enabled. This problem is in
general undecidable even when data is abstracted and when the threads (with
recursion) synchronize only using a finite set of locks. Popular programming
paradigms that limit the lock usage patterns have been identified under which
the pairwise reachability problem becomes decidable. In this paper, we consider
a new natural programming paradigm, called contextual locking, which ties the
lock usage to calling patterns in each thread: we assume that locks are
released in the same context that they were acquired and that every lock
acquired by a thread in a procedure call is released before the procedure
returns. Our main result is that the pairwise reachability problem is
polynomial-time decidable for this new programming paradigm as well. The
problem becomes undecidable if the locks are reentrant; reentrant locking is a
\emph{recursive locking} mechanism which allows a thread in a multi-threaded
program to acquire the reentrant lock multiple times.Comment: A preliminary version appears in TACAS 201
QPTAS and Subexponential Algorithm for Maximum Clique on Disk Graphs
A (unit) disk graph is the intersection graph of closed (unit) disks in the plane. Almost three decades ago, an elegant polynomial-time algorithm was found for Maximum Clique on unit disk graphs [Clark, Colbourn, Johnson; Discrete Mathematics '90]. Since then, it has been an intriguing open question whether or not tractability can be extended to general disk graphs. We show the rather surprising structural result that a disjoint union of cycles is the complement of a disk graph if and only if at most one of those cycles is of odd length. From that, we derive the first QPTAS and subexponential algorithm running in time 2^{O~(n^{2/3})} for Maximum Clique on disk graphs. In stark contrast, Maximum Clique on intersection graphs of filled ellipses or filled triangles is unlikely to have such algorithms, even when the ellipses are close to unit disks. Indeed, we show that there is a constant ratio of approximation which cannot be attained even in time 2^{n^{1-epsilon}}, unless the Exponential Time Hypothesis fails
The eclipsing bursting X-ray binary EXO 0748-676 revisited by XMM-Newton
The bright eclipsing and bursting low-mass X-ray binary EXO 0748-676 has been
observed at several occasions by XMM-Newton during the initial calibration and
performance verification (CAL/PV) phase. We present here the results obtained
from observations with the EPIC cameras. Apart from several type-I X-ray
bursts, the source shows a high degree of variability with the presence of soft
flares. The wide energy coverage and high sensitivity of XMM-Newton allows for
the first time a detailed description of the spectral variability.
The source is found to be the superposition of a central (~2 10^8 cm)
Comptonized emission, most probably a corona surrounding the inner edge of an
accretion disk, associated with a more extended (~3 10^10 cm) thermal halo at a
typical temperature of ~0.6 keV with an indication of non-solar abundances.
Most of the variations of the source can be accounted for by a variable
absorption affecting only the central comptonized component and reaching up to
NH ~1.3 10^23 cm^{-2}. The characteristics of the surrounding halo are found
compatible with an irradiated atmosphere of an accretion disc which intercepts
the central emission due to the system high inclination.Comment: 6 pages, 4 figures, accepted for publication in A&A Letters, XMM
special issu
Structural relationship between link proteins and proteoglycan monomers
AbstractStructural homologies between link proteins and proteoglycan monomers are demonstrated. A possible redundancy in the proteoglycan monomers structure is discussed and the link proteins domains homologous to other proteins are specified
Investigation of collective radial expansion and stopping in heavy ion collisions at Fermi energies
We present an analysis of multifragmentation events observed in central Xe+Sn
reactions at Fermi energies. Performing a comparison between the predictions of
the Stochastic Mean Field (SMF) transport model and experimental data, we
investigate the impact of the compression-expansion dynamics on the properties
of the final reaction products. We show that the amount of radial collective
expansion, which characterizes the dynamical stage of the reaction, influences
directly the onset of multifragmentation and the kinematic properties of
multifragmentation events. For the same set of events we also undertake a shape
analysis in momentum space, looking at the degree of stopping reached in the
collision, as proposed in recent experimental studies. We show that full
stopping is achieved for the most central collisions at Fermi energies.
However, considering the same central event selection as in the experimental
data, we observe a similar behavior of the stopping power with the beam energy,
which can be associated with a change of the fragmentation mechanism, from
statistical to prompt fragment emission.Comment: 15 page
Reducing the Number of Sputum Samples Examined and Thresholds for Positivity: An Opportunity to Optimise Smear Microscopy.
SETTING: Urban health clinic, Nairobi. OBJECTIVE: To evaluate the impact on tuberculosis (TB) case detection and laboratory workload of reducing the number of sputum smears examined and thresholds for diagnosing positive smears and positive cases. DESIGN: In this prospective study, three Ziehl-Neelsen stained sputum smears from consecutive pulmonary TB suspects were examined blind. The standard approach (A), > or = 2 positive smears out of 3, using a cut-off of 10 acid-fast bacilli (AFB)/100 high-power fields (HPF), was compared with approaches B, > or = 2 positive smears (> or = 4 AFB/100 HPF) out of 3, one of which is > or = 10 AFB/100 HPF; C, > or = 2 positive smears (> or = 4 AFB/100 HPF) out of 3; D, > or = 1 positive smear (> or = 10 AFB/100 HPF) out of 2; and E, > or = 1 positive smear (> or = 4 AFB/100 HPF) out of 2. The microscopy gold standard was detection of at least one positive smear (> or = 4 AFB/100 HPF) out of 3. RESULTS: Among 644 TB suspects, the alternative approaches detected from 114 (17.7%) (approach B) to 123 cases (19.1%) (approach E) compared to 105 cases (16.3%) for approach A (P < 0.005). Sensitivity ranged between 82.0% (105/128) for A and 96.1% (123/128) for E. The single positive smear approaches reduced the number of smears by 36% compared to approach A. CONCLUSION: Reducing the number of specimens and the positivity threshold to define a positive case increased the sensitivity of microscopy and reduced laboratory workload
Performance of LED-Based Fluorescence Microscopy to Diagnose Tuberculosis in a Peripheral Health Centre in Nairobi.
Sputum microscopy is the only tuberculosis (TB) diagnostic available at peripheral levels of care in resource limited countries. Its sensitivity is low, particularly in high HIV prevalence settings. Fluorescence microscopy (FM) can improve performance of microscopy and with the new light emitting diode (LED) technologies could be appropriate for peripheral settings. The study aimed to compare the performance of LED-FM versus Ziehl-Neelsen (ZN) microscopy and to assess feasibility of LED-FM at a low level of care in a high HIV prevalence country
Infinite Volume and Continuum Limits of the Landau-Gauge Gluon Propagator
We extend a previous improved action study of the Landau gauge gluon
propagator, by using a variety of lattices with spacings from to
0.41 fm, to more fully explore finite volume and discretization effects. We
also extend a previously used technique for minimizing lattice artifacts, the
appropriate choice of momentum variable or ``kinematic correction'', by
considering it more generally as a ``tree-level correction''. We demonstrate
that by using tree-level correction, determined by the tree-level behavior of
the action being considered, it is possible to obtain scaling behavior over a
very wide range of momenta and lattice spacings. This makes it possible to
explore the infinite volume and continuum limits of the Landau-gauge gluon
propagator.Comment: 24 pages RevTex, 18 figures; Responses to referee comments, minor
change
- …
