3,650 research outputs found

    On the Formation of Gas Giant Planets on Wide Orbits

    Full text link
    A new suite of three dimensional radiative, gravitational hydrodynamical models is used to show that gas giant planets are unlikely to form by the disk instability mechanism at distances of ~100 AU to ~200 AU from young stars. A similar result seems to hold for the core accretion mechanism. These results appear to be consistent with the paucity of detections of gas giant planets on wide orbits by infrared imaging surveys, and also imply that if the object orbiting GQ Lupus is a gas giant planet, it most likely did not form at a separation of ~100 AU. Instead, a wide planet around GQ Lup must have undergone a close encounter with a third body that tossed the planet outward to its present distance from its protostar. If it exists, the third body may be detectable by NASA's Space Interferometry Mission.Comment: 13 pages, 4 figures. in press, ApJ Letter

    Orbital Migration of Protoplanets in a Marginally Gravitationally Unstable Disk

    Full text link
    Core accretion and disk instability require giant protoplanets to form in the presence of disk gas. Protoplanet migration models generally assume disk masses low enough that the disk's self-gravity can be neglected. However, disk instability requires a disk massive enough to be marginally gravitationally unstable (MGU). Even for core accretion, a FU Orionis outburst may require a brief MGU disk phase. We present a new set of three dimensional, gravitational radiation hydrodynamics models of MGU disks with multiple protoplanets, which interact gravitationally with the disk and with each other, including disk gas mass accretion. Initial protoplanet masses are 0.01 to 10 MM_\oplus for core accretion models, and 0.1 to 3 MJupM_{Jup} for Nice scenario models, starting on circular orbits with radii of 6, 8, 10, or 12 AU, inside a 0.091 MM_\odot disk extending from 4 to 20 AU around a 1M1 M_\odot protostar. Evolutions are followed for up to \sim 4000 yr and involve phases of relative stability (ee \sim 0.1) interspersed with chaotic phases (ee \sim 0.4) of orbital interchanges. The 0.01 to 10 MM_\oplus cores can orbit stably for \sim 1000 yr: monotonic inward or outward orbital migration of the type seen in low mass disks does not occur. A system with giant planet masses similar to our Solar System (1.0, 0.33, 0.1, 0.1 MJupM_{Jup}) was stable for over 1000 yr, and a Jupiter-Saturn-like system was stable for over 3800 yr, implying that our giant planets might well survive a MGU disk phase.Comment: 27 pages, 7 figures, 3 tables - in press, Ap

    Gas Giant Protoplanets Formed by Disk Instability in Binary Star Systems

    Full text link
    We present a suite of three dimensional radiative gravitational hydrodynamics models suggesting that binary stars may be quite capable of forming planetary systems similar to our own. The new models with binary companions do not employ any explicit artificial viscosity, and also include the third (vertical) dimension in the hydrodynamic calculations, allowing for transient phases of convective cooling. The calculations of the evolution of initially marginally gravitationally stable disks show that the presence of a binary star companion may actually help to trigger the formation of dense clumps that could become giant planets. We also show that in models without binary companions, which begin their evolution as gravitationally stable disks, the disks evolve to form dense rings, which then break-up into self-gravitating clumps. These latter models suggest that the evolution of any self-gravitating disk with sufficient mass to form gas giant planets is likely to lead to a period of disk instability, even in the absence of a trigger such as a binary star companion.Comment: 52 pages, 28 figure

    Evolution of the Solar Nebula. IX. Gradients in the Spatial Heterogeneity of the Short-Lived Radioisotopes 60^{60}Fe and 26^{26}Al and the Stable Oxygen Isotopes

    Full text link
    Short-lived radioisotopes (SLRI) such as 60^{60}Fe and 26^{26}Al were likely injected into the solar nebula in a spatially and temporally heterogeneous manner. Marginally gravitationally unstable (MGU) disks, of the type required to form gas giant planets, are capable of rapid homogenization of isotopic heterogeneity as well as of rapid radial transport of dust grains and gases throughout a protoplanetary disk. Two different types of new models of a MGU disk in orbit around a solar-mass protostar are presented. The first set has variations in the number of terms in the spherical harmonic solution for the gravitational potential, effectively studying the effect of varying the spatial resolution of the gravitational torques responsible for MGU disk evolution. The second set explores the effects of varying the initial minimum value of the Toomre QQ stability parameter, from values of 1.4 to 2.5, i.e., toward increasingly less unstable disks. The new models show that the basic results are largely independent of both sets of variations. MGU disk models robustly result in rapid mixing of initially highly heterogeneous distributions of SLRIs to levels of \sim 10% in both the inner ( 10 AU) disk regions, and to even lower levels (\sim 2%) in intermediate regions, where gravitational torques are most effective at mixing. These gradients should have cosmochemical implications for the distribution of SLRIs and stable oxygen isotopes contained in planetesimals (e.g., comets) formed in the giant planet region (\sim 5 to \sim 10 AU) compared to those formed elsewhere.Comment: 37 pages, 1 table, 19 figures, ApJ accepte

    On Pressure Gradients and Rapid Migration of Solids in an Inhomogeneous Solar Nebula

    Get PDF
    We study the motions of small solids, ranging from micron-sized dust grains to 100-m objects, in the vicinity of a local density enhancement of an isothermal gaseous solar nebula. Being interested in possible application of the results to the formation of clumps and spiral arms in a circumstellar disk, we numerically integrate the equations of motion of such solids and study their migration for different values of their sizes and masses and also for different physical properties of the gas, such as its density and temperature. We show that, considering the drag force of the gas and also the gravitational attraction of the nebula, it is possible for solids, within a certain range of size and mass, to migrate rapidly (i.e. within ~1000 years) toward the location of a local maximum density where collisions and coagulation may result in an accelerated rate of planetesimal formation.Comment: 20 pages, 7 figures, submitted for publicatio

    Collapse and Fragmentation of Molecular Cloud Cores. X. Magnetic Braking of Prolate and Oblate Cores

    Full text link
    The collapse and fragmentation of initially prolate and oblate, magnetic molecular clouds is calculated in three dimensions with a gravitational, radiative hydrodynamics code. The code includes magnetic field effects in an approximate manner: magnetic pressure, tension, braking, and ambipolar diffusion are all modelled. The parameters varied for both the initially prolate and oblate clouds are the initial degree of central concentration of the radial density profile, the initial angular velocity, and the efficiency of magnetic braking (represented by a factor fmb=104f_{mb} = 10^{-4} or 10310^{-3}). The oblate cores all collapse to form rings that might be susceptible to fragmentation into multiple systems. The outcome of the collapse of the prolate cores depends strongly on the initial density profile. Prolate cores with central densities 20 times higher than their boundary densities collapse and fragment into binary or quadruple systems, whereas cores with central densities 100 times higher collapse to form single protostars embedded in bars. The inclusion of magnetic braking is able to stifle protostellar fragmentation in the latter set of models, as when identical models were calculated without magnetic braking (Boss 2002), those cores fragmented into binary protostars. These models demonstrate the importance of including magnetic fields in studies of protostellar collapse and fragmentation, and suggest that even when magnetic fields are included, fragmentation into binary and multiple systems remains as a possible outcome of protostellar collapse.Comment: 20 pages, 8 figures. Astrophysical Journal, in pres

    Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-Lived Radioisotopes with a Shock Wave. IV. Effects of Rotational Axis Orientation

    Full text link
    Both astronomical observations of the interaction of Type II supernova remnants (SNR) with dense interstellar clouds as well as cosmochemical studies of the abundances of daughter products of short-lived radioisotopes (SLRIs) formed by supernova nucleosynthesis support the hypothesis that the Solar Systems SLRIs may have been derived from a supernova. This paper continues a series devoted to examining whether such a shock wave could have triggered the dynamical collapse of a dense, presolar cloud core and simultaneously injected sufficient abundances of SLRIs to explain the cosmochemical evidence. Here we examine the effects of shock waves striking clouds whose spin axes are oriented perpendicular, rather than parallel, to the direction of propagation of the shock front. The models start with 2.2 solar mass cloud cores and shock speeds of 20 or 40 km/sec. Central protostars and protoplanetary disks form in all models, though with disk spin axes aligned somewhat randomly. The disks derive most of their angular momentum not from the initial cloud rotation, but from the Rayleigh-Taylor fingers that also inject shock wave SLRIs. Injection efficiencies, fi, the fraction of the incident shock wave material injected into the collapsing cloud core, are 0.04 - 0.1 in these models, similar to when the rotation axis is parallel to the shock propagation direction. Evidently altering the rotation axis orientation has only a minor effect on the outcome, strengthening the case for this scenario as an explanation for the Solar Systems SLRIs.Comment: 24 pages, 12 figures, 1 table, accepted by Ap
    corecore