1,256 research outputs found

    Microhabitat selection in the common lizard: implications of biotic interactions, age, sex, local processes, and model transferability among populations.

    Get PDF
    Modeling species' habitat requirements are crucial to assess impacts of global change, for conservation efforts and to test mechanisms driving species presence. While the influence of abiotic factors has been widely examined, the importance of biotic factors and biotic interactions, and the potential implications of local processes are not well understood. Testing their importance requires additional knowledge and analyses at local habitat scale. Here, we recorded the locations of species presence at the microhabitat scale and measured abiotic and biotic parameters in three different common lizard (Zootoca vivipara) populations using a standardized sampling protocol. Thereafter, space use models and cross-evaluations among populations were run to infer local processes and estimate the importance of biotic parameters, biotic interactions, sex, and age. Biotic parameters explained more variation than abiotic parameters, and intraspecific interactions significantly predicted the spatial distribution. Significant differences among populations in the relationship between abiotic parameters and lizard distribution, and the greater model transferability within populations than between populations are in line with effects predicted by local adaptation and/or phenotypic plasticity. These results underline the importance of including biotic parameters and biotic interactions in space use models at the population level. There were significant differences in space use between sexes, and between adults and yearlings, the latter showing no association with the measured parameters. Consequently, predictive habitat models at the population level taking into account different sexes and age classes are required to understand a specie's ecological requirements and to allow for precise conservation strategies. Our study therefore stresses that future predictive habitat models at the population level and their transferability should take these parameters into account

    A Comparative Study of Generic Visual Components of Two-Dimensional Versus Three-Dimensional Laparoscopic Images

    Get PDF
    Aims: There is a strong evidence to suggest that 3D imaging improves the laparoscopic task performance when compared against 2D. However, to date, no study has explained why that might be. We identified six generic visual components during laparoscopic imaging and aimed to study each component in both 2D and 3D environments for comparison.Methods: Twenty-four consented laparoscopic novices performed specific isolated tasks in a laparoscopic Endo Trainer in 2D and 3D separately. The six endpoints were the accuracy in detecting changes in the laparoscopic images in the following components: distance, area, angle, curvature, volume and spatial coordinates. All the components except the spatial coordinates were assessed by creation, measurement and comparison. Each component was analysed between 2D and 3D groups and within each group at different values. Tests of spatial coordinates were video-recorded and analysed for error number and error types by human reliability analysis technique. Errors types included past-pointing, not reaching the object and touching the wrong object. The results were statistically analysed with independent T test.Results: There was no statistically significant difference between 2D and 3D accuracy in the angle, area, distance and curvature. 3D performed more accurately in comparing volumes (p = 0.05). In spatial coordinates, there were a statistically significant higher number of errors in 2D as compared to 3D (p &lt; 0.001). Past-pointing and touching the wrong objects were significantly higher in 2D (p &lt; 0.05).Conclusion: Between all the visual components, detecting change in volume and the spatial coordinates showed significant improvement in 3D environment when compared to 2D.</p

    Self-diffusion in dense granular shear flows

    Full text link
    Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of granular systems. We present experimental results on diffusivity in dense, granular shear in a 2D Couette geometry. We find that self-diffusivities are proportional to the local shear rate with diffusivities along the mean flow approximately twice as large as those in the perpendicular direction. The magnitude of the diffusivity is D \approx \dot\gamma a^2 where a is the particle radius. However, the gradient in shear rate, coupling to the mean flow, and drag at the moving boundary lead to particle displacements that can appear sub- or super-diffusive. In particular, diffusion appears superdiffusive along the mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that is a property of dense systems with no obvious analog in rapid flows. Specifically, the diffusivity is supressed along the direction of the strong force network. A simple random walk simulation reproduces the key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean flow, confirming the underlying diffusive motion. The additional anisotropy is not observed in the simulation since the strong force network is not included. Examples of correlated motion, such as transient vortices, and Levy flights are also observed. Although correlated motion creates velocity fields qualitatively different from Brownian motion and can introduce non-diffusive effects, on average the system appears simply diffusive.Comment: 13 pages, 20 figures (accepted to Phys. Rev. E

    IgG light chain-independent secretion of heavy chain dimers: consequence for therapeutic antibody production and design

    Get PDF
    Rodent monoclonal antibodies with specificity towards important biological targets are developed for therapeutic use by a process of humanisation. This process involves the creation of molecules, which retain the specificity of the rodent antibody but contain predominantly human coding sequence. Here we show that some humanised heavy chains can fold, form dimers and be secreted even in the absence of light chain. Quality control of recombinant antibody assembly in vivo is thought to rely upon folding of the heavy chain CH1 domain. This domain acts as a switch for secretion, only folding upon interaction with the light chain CL domain. We show that the secreted heavy-chain dimers contain folded CH1 domains and contribute to the heterogeneity of antibody species secreted during the expression of therapeutic antibodies. This subversion of the normal quality control process is dependent upon the heavy chain variable domain, is prevalent with engineered antibodies and can occur when only the Fab fragments are expressed. This discovery will impact on the efficient production of both humanised antibodies as well as the design of novel antibody formats

    Automated VMAT planning for postoperative adjuvant treatment of advanced gastric cancer

    Get PDF
    Background: Postoperative/adjuvant radiotherapy of advanced gastric cancer involves a large planning target volume (PTV) with multi-concave shapes which presents a challenge for volumetric modulated arc therapy (VMAT) planning. This study investigates the advantages of automated VMAT planning for this site compared to manual VMAT planning by expert planners. Methods: For 20 gastric cancer patients in the postoperative/adjuvant setting, dual-arc VMAT plans were generated using fully automated multi-criterial treatment planning (autoVMAT), and compared to manually generated VMAT plans (manVMAT). Both automated and manual plans were created to deliver a median dose of 45 Gy to the PTV using identical planning and segmentation parameters. Plans were evaluated by two expert radiation oncologists for clinical acceptability. AutoVMAT and manVMAT plans were also compared based on dose-volume histogram (DVH) and predicted normal tissue complication probability (NTCP) analysis. Results: Both manVMAT and autoVMAT plans were considered clinically acceptable. Target coverage was similar (manVMAT: 96.6 ± 1.6%, autoVMAT: 97.4 ± 1.0%, p = 0.085). With autoVMAT, median kidney dose was reduced on average by &gt; 25%; (for left kidney from 11.3 ± 2.1 Gy to 8.9 ± 3.5 Gy (p = 0.002); for right kidney from 9.2 ± 2.2 Gy to 6.1 ± 1.3 Gy (p &lt;  0.001)). Median dose to the liver was lower as well (18.8 ± 2.3 Gy vs. 17.1 ± 3.6 Gy, p = 0.048). In addition, Dmax of the spinal cord was significantly reduced (38.3 ± 3.7 Gy vs. 31.6 ± 2.6 Gy, p &lt;  0.001). Substantial improvements in dose conformity and integral dose were achieved with autoVMAT plans (4.2% and 9.1%, respectively; p &lt;  0.001). Due to the better OAR sparing in the autoVMAT plans compared to manVMAT plans, the predicted NTCPs for the left and right kidney and the liver-PTV were significantly reduced by 11.3%, 12.8%, 7%, respectively (p ≤ 0.001). Delivery time and total number of monitor units were increased in autoVMAT plans (from 168 ± 19 s to 207 ± 26 s, p = 0.006) and (from 781 ± 168 MU to 1001 ± 134 MU, p = 0.003), respectively. Conclusions: For postoperative/adjuvant radiotherapy of advanced gastric cancer, involving a complex target shape, automated VMAT planning is feasible and can substantially reduce the dose to the kidneys and the liver, without compromising the target dose delivery

    Appropriate use criteria for echocardiography in the Netherlands

    Get PDF
    Introduction Appropriate use criteria (AUC) for echocardiography based on clinical scenarios were previously published by an American Task Force. We determined whether members of the Dutch Working Group on Echocardiography (WGE) would rate these scenarios in a similar way. Methods All 32 members of the WGE were invited to judge clinical scenarios independently using a blanked version of the previously published American version of AUC for echocardiography. During a face-to-face meeting, consensus about the final rating was reached by open discussion for each indication. For reasons of simplicity, the scores were reduced from a 9-point scale to a 3-point scale (indicating an appropriate, uncertain or inappropriate echo indication, respectively). Results Nine cardiologist members of the WGE reported their judgment on the echo cases (n = 153). Seventy-one indications were rated as appropriate, 35 were rated as uncertain, and 47 were rated as inappropriate. In 5% of the cases the rating was opposite to that in the original (appropriate compared with inappropriate and vice versa), whereas in 20% judgements differed by 1 level of appropriateness. After the consensus meeting, the appropriateness of 7 (5%) cases was judged differently compared with the original paper. Conclusions Echocardiography was rated appropriate when it is applied for an initial diagnosis, a change in clinical status or a change in patient management. However, in about 5% of the listed clinical scenarios, members of the Dutch WGE rated the AUC for echocardiography differently as compared with their American counterparts. Further research is warranted to analyse this decreased external validity

    Mutations in TITF-1 are associated with benign hereditary chorea

    Get PDF
    Benign hereditary chorea (BHC) (MIM 118700) is an autosomal dominant movement disorder. The early onset of symptoms (usually before the age of 5 years) and the observation that in some BHC families the symptoms tend to decrease in adulthood suggests that the disorder results from a developmental disturbance of the brain. In contrast to Huntington disease (MIM 143100), BHC is non-progressive and patients have normal or slightly below normal intelligence. There is considerable inter- and intrafamilial variability, including dysarthria, axial dystonia and gait disturbances. Previously, we identified a locus for BHC on chromosome 14 and subsequently identified additional independent families linked to the same locus. Recombination analysis of all chromosome 14-linked families resulted initially in a reduction of the critical interval for the BHC gene to 8.4 cM between markers D14S49 and D14S278. More detailed analysis of the critical region in a small BHC family revealed a de novo deletion of 1.2 Mb harboring the TITF-1 gene, a homeodomain-containing transcription factor essential for the organogenesis of the lung, thyroid and the basal ganglia. Here we report evidence that mutations in TITF-1 are associated with BHC
    corecore