161 research outputs found

    A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity

    Get PDF
    Epidemiological studies have documented a reduced prevalence of Alzheimer's disease among users of nonsteroidal anti-inflammatory drugs (NSAIDs). It has been proposed that NSAIDs exert their beneficial effects in part by reducing neurotoxic inflammatory responses in the brain, although this mechanism has not been proved. Here we report that the NSAIDs ibuprofen, indomethacin and sulindac sulphide preferentially decrease the highly amyloidogenic Aβ42 peptide (the 42-residue isoform of the amyloid-β peptide) produced from a variety of cultured cells by as much as 80%. This effect was not seen in all NSAIDs and seems not to be mediated by inhibition of cyclooxygenase (COX) activity, the principal pharmacological target of NSAIDs. Furthermore, short-term administration of ibuprofen to mice that produce mutant β-amyloid precursor protein (APP) lowered their brain levels of Aβ42. In cultured cells, the decrease in Aβ42 secretion was accompanied by an increase in the Aβ(1–38) isoform, indicating that NSAIDs subtly alter γ-secretase activity without significantly perturbing other APP processing pathways or Notch cleavage. Our findings suggest that NSAIDs directly affect amyloid pathology in the brain by reducing Aβ42 peptide levels independently of COX activity and that this Aβ42-lowering activity could be optimized to selectively target the pathogenic Aβ42 species

    Prediction of photoperiodic regulators from quantitative gene circuit models

    Get PDF
    Photoperiod sensors allow physiological adaptation to the changing seasons. The external coincidence hypothesis postulates that a light-responsive regulator is modulated by a circadian rhythm. Sufficient data are available to test this quantitatively in plants, though not yet in animals. In Arabidopsis, the clock-regulated genes CONSTANS (CO) and FLAVIN, KELCH, F-BOX (FKF1) and their lightsensitive proteins are thought to form an external coincidence sensor. We use 40 timeseries of molecular data to model the integration of light and timing information by CO, its target gene FLOWERING LOCUS T (FT), and the circadian clock. Among other predictions, the models show that FKF1 activates FT. We demonstrate experimentally that this effect is independent of the known activation of CO by FKF1, thus we locate a major, novel controller of photoperiodism. External coincidence is part of a complex photoperiod sensor: modelling makes this complexity explicit and may thus contribute to crop improvement

    Negative outcomes evoke cyclic irrational decisions in Rock, Paper, Scissors

    Get PDF
    Rock, Paper, Scissors (RPS) represents a unique gaming space in which the predictions of human rational decision-making can be compared with actual performance. Playing a computerized opponent adopting a mixed-strategy equilibrium, participants revealed a non-significant tendency to over-select Rock. Further violations of rational decision-making were observed using an inter-trial analysis where participants were more likely to switch their item selection at trial n + 1 following a loss or draw at trial n, revealing the strategic vulnerability of individuals following the experience of negative rather than positive outcome. Unique switch strategies related to each of these trial n outcomes were also identified: after losing participants were more likely to ‘downgrade’ their item (e.g., Rock followed by Scissors) but after drawing participants were more likely to ‘upgrade’ their item (e.g., Rock followed by Paper). Further repetition analysis revealed that participants were more likely to continue their specific cyclic item change strategy into trial n + 2. The data reveal the strategic vulnerability of individuals following the experience of negative rather than positive outcome, the tensions between behavioural and cognitive influences on decision making, and underline the dangers of increased behavioural predictability in other recursive, non-cooperative environments such as economics and politics

    Synthetic biology: Understanding biological design from synthetic circuits

    Get PDF
    An important aim of synthetic biology is to uncover the design principles of natural biological systems through the rational design of gene and protein circuits. Here, we highlight how the process of engineering biological systems — from synthetic promoters to the control of cell–cell interactions — has contributed to our understanding of how endogenous systems are put together and function. Synthetic biological devices allow us to grasp intuitively the ranges of behaviour generated by simple biological circuits, such as linear cascades and interlocking feedback loops, as well as to exert control over natural processes, such as gene expression and population dynamics

    Quorum sensing:Implications on rhamnolipid biosurfactant production

    Get PDF
    Quorum sensing (QS) has received significant attention in the past few decades. QS describes population density dependent cell to cell communication in bacteria using diffusible signal molecules. These signal molecules produced by bacterial cells, regulate various physiological processes important for social behavior and pathogenesis. One such process regulated by quorum sensing molecules is the production of a biosurfactant, rhamnolipid. Rhamnolipids are important microbially derived surface active agents produced by Pseudomonas spp. under the control of two interrelated quorum sensing systems; namely las and rhl. Rhamnolipids possess antibacterial, antifungal and antiviral properties. They are important in motility, cell to cell interactions, cellular differentiation and formation of water channels that Currently, biosurfactants are unable to compete economically with chemically synthesized compounds in the market due to high production costs. Once the genes required for biosurfactant production have been identified, they can be placed under the regulation of strong promoters in nonpathogenic, heterologous hosts to enhance production. The production of rhamnolipids could be increased by cloning both the rhlAB rhamnosyltransferase genes and the rhlRI quorum sensing system into a suitable bacterium such as E. coli or P. putida and facilitate rhamnolipid production. Biosurfactants can also be genetically engineered for different industrial applications assuming there is a strong understanding of both the genetics and the structure-function relationships of each component of the molecule. Genetic engineering of surfactin has already been reported, with recent papers describing the creation of novel peptide structures from the genetic recombination of several peptide synthetases. Recent application of dynamic metabolic engineering strategies for controlled gene expression could lower the cost of fermentation processes by increasing the product formation. Therefore, by integrating a genetic circuit into applications of metabolic engineering the biochemical production can be optimized. Furthermore, novel strategies could be designed on the basis of information obtained from the studies of quorum sensing and biosurfactants produced suggesting enormous practical applications.</p

    Computing with bacterial constituents, cells and populations: from bioputing to bactoputing

    Get PDF
    The relevance of biological materials and processes to computing—aliasbioputing—has been explored for decades. These materials include DNA, RNA and proteins, while the processes include transcription, translation, signal transduction and regulation. Recently, the use of bacteria themselves as living computers has been explored but this use generally falls within the classical paradigm of computing. Computer scientists, however, have a variety of problems to which they seek solutions, while microbiologists are having new insights into the problems bacteria are solving and how they are solving them. Here, we envisage that bacteria might be used for new sorts of computing. These could be based on the capacity of bacteria to grow, move and adapt to a myriad different fickle environments both as individuals and as populations of bacteria plus bacteriophage. New principles might be based on the way that bacteria explore phenotype space via hyperstructure dynamics and the fundamental nature of the cell cycle. This computing might even extend to developing a high level language appropriate to using populations of bacteria and bacteriophage. Here, we offer a speculative tour of what we term bactoputing, namely the use of the natural behaviour of bacteria for calculating

    Introduction of Ophiobolus graminis into new polders and its decline

    Full text link

    Florida state dental society

    No full text
    Editors: Aug. 1859-July 1865, J. D. White, J. H. McQuillen, G. J. Ziegler.--Aug. 1865-Dec. 1871, J. H. McQuillen, G. J. Ziegler.--Jan. 1872-May 1891, J. W. White.--July 1891-Apr. 1930, E. C. Kirk (with L. P. Anthony, Dec. 1917-Apr. 1930).--May 1930-Dec. 1936, L. P. Anthony.Vols. 1-13 are called "new series."Merged in Jan. 1937 with: Journal of the American Dental Association, ISSN 1048-6364, to form: Journal of the American Dental Association and dental cosmos, ISSN 0375-8451
    corecore