312 research outputs found

    Living at the Edge: A Large Deviations Approach to the Outage MIMO Capacity

    Full text link
    Using a large deviations approach we calculate the probability distribution of the mutual information of MIMO channels in the limit of large antenna numbers. In contrast to previous methods that only focused at the distribution close to its mean (thus obtaining an asymptotically Gaussian distribution), we calculate the full distribution, including its tails which strongly deviate from the Gaussian behavior near the mean. The resulting distribution interpolates seamlessly between the Gaussian approximation for rates RR close to the ergodic value of the mutual information and the approach of Zheng and Tse for large signal to noise ratios ρ\rho. This calculation provides us with a tool to obtain outage probabilities analytically at any point in the (R,ρ,N)(R, \rho, N) parameter space, as long as the number of antennas NN is not too small. In addition, this method also yields the probability distribution of eigenvalues constrained in the subspace where the mutual information per antenna is fixed to RR for a given ρ\rho. Quite remarkably, this eigenvalue density is of the form of the Marcenko-Pastur distribution with square-root singularities, and it depends on the values of RR and ρ\rho.Comment: Accepted for publication, IEEE Transactions on Information Theory (2010). Part of this work appears in the Proc. IEEE Information Theory Workshop, June 2009, Volos, Greec

    Interference management for moving networks in ultra-dense urban scenarios

    Get PDF
    The number of users relying on broadband wireless connectivity while riding public transportation vehicles is increasing significantly. One of the promising solutions is to deploy moving base stations on public transportation vehicles to form moving networks (MNs) that serve these vehicular users inside the vehicles. In this study, we investigated the benefits and challenges in deploying MNs in ultra-dense urban scenarios. We identified that the key challenge limiting the performance of MNs in ultra-dense urban scenarios is inter-cell interference, which is exacerbated by the urban canyon effects. To address this challenge, we evaluated different inter-cell interference coordination and multi-antenna interference suppression techniques for MNs. We showed that in using MNs together with effective interference management approaches, the quality of service for users in vehicles can be significantly improved, with negligible impacts on the performance of regular outdoor users

    Posterior Reconstruction Before Anastomosis Improves the Anastomosis Time During Robot-Assisted Radical Prostatectomy

    Get PDF
    Posterior reconstruction prior to anastomosis decreased anastomotic time for robotic surgeons in training
    corecore