661 research outputs found

    Novel 3D PZT thin film structure for micromechanics

    Get PDF
    In this work, fabrication and properties of 3-dimensional structures coated with piezoelectric Pb(Zr,Ti)O3 (PZT) thin films have been studied in order to improve the piezoelectric coupling into the third dimension. Calotte layers have been chosen as demonstration devices. The base diameters range from 40 to 120μm, the height varies between 10 to 40μm. A dynamic, in-situ co-sputtering process allowing for in-situ growth was applied. Micromoulds were formed by wet etching in silicon. The etchant was a HNA solution (HF, HNO3, CH3COOH) on a silicon dioxide mask. Calottes were obtained with the desired geometry and smooth surface state after few minutes etching time, and the use of chemical mechanical polishing (CMP). After deposition of the PZT membrane, deep silicon dry etching was then used to liberate the calotte layer. The dielectric constant and loss tangent of the calotte capacitors amounted to 830 and 5%, respectively (10kHz). The fundamental resonance frequencies varied between 2.5 and 16.5MHz, and were found to be inversely proportional to the base area of the calotte, the proportionality factor being 0.08Hz m

    Efficient operation of a high-power X-band gyroklystron

    Get PDF
    Experimental studies of amplification in a two-cavity X-band gyroklystron are reported. The system utilizes a thermionic magnetron injection gun at voltages up to 440 kV and currents up to 190 A in 1-μs pulses. Optimum performance is achieved by tapering the magnetic-field profile. Peak powers of 20 MW in the TE01 mode at 9.87 GHz are measured with calibrated crystals and with methanol calorimetry. Resultant efficiencies are in excess of 31% and large-signal gains surpass 26 dB. The experimental results are in good agreement with simulated results from a partially self-consistent, nonlinear, steady-state code

    High-power operation of a K-band second harmonic gyroklystron

    Get PDF
    Amplification studies of a two-cavity second-harmonic gyroklystron are reported. A magnetron injection gun produces a 440 kV, 200–245 A, 1 μs beam with an average perpendicular-to-parallel velocity ratio slightly less than 1. The TE011 input cavity is driven near 9.88 GHz and the TE021 output cavity resonates near 19.76 GHz. Peak powers exceeding 21 MW are achieved with an efficiency near 21% and a large signal gain above 25 dB. This performance represents the current state of the art for gyroklystrons in terms of the peak power normalized to the output wavelength squared

    One-loop corrections to the Drell--Yan process in SANC (II). The neutral current case

    Full text link
    Radiative corrections to the neutral current Drell--Yan-like processes are considered. Complete one-loop electroweak corrections are calculated within the SANC system. Theoretical uncertainties are discussed. Numerical results are presented for typical conditions of LHC experiments.Comment: 17 pages, 9 figures, 3 table

    Theoretical Uncertainties in Electroweak Boson Production Cross Sections at 7, 10, and 14 TeV at the LHC

    Full text link
    We present an updated study of the systematic errors in the measurements of the electroweak boson cross-sections at the LHC for various experimental cuts for a center of mass energy of 7, 10 and 14 TeV. The size of both electroweak and NNLO QCD contributions are estimated, together with the systematic error from the parton distributions. The effects of new versions of the MSTW, CTEQ, and NNPDF PDFs are considered.Comment: PDFLatex with JHEP3.cls. 22 pages, 43 figures. Version 2 adds the CT10W PDF set to analysis and updates the final systematic error table and conclusions, plus several citations and minor wording changes. Version 3 adds some references on electroweak and mixed QED/QCD corrections. Version 4 adds more references and acknowledgement

    NNLO Logarithmic Expansions and Precise Determinations of the Neutral Currents near the Z Resonance at the LHC: The Drell-Yan case

    Get PDF
    We present a comparative study of the invariant mass and rapidity distributions in Drell-Yan lepton pair production, with particular emphasis on the role played by the QCD evolution. We focus our study around the Z resonance (50<Q<20050 <Q < 200 GeV) and perform a general analysis of the factorization/renormalization scale dependence of the cross sections, with the two scales included both in the evolution and in the hard scatterings. We also present the variations of the cross sections due to the errors on the parton distributions (pdf's) and an analysis of the corresponding KK-factors. Predictions from several sets of pdf's, evolved by MRST and Alekhin are compared with those generated using \textsc{Candia}, a NNLO evolution program that implements the theory of the logarithmic expansions, developed in a previous work. These expansions allow to select truncated solutions of varying accuracy using the method of the xx-space iterates. The evolved parton distributions are in good agreement with other approaches. The study can be generalized for high precision searches of extra neutral gauge interactions at the LHC.Comment: 75 pages,30 figures, 30 table

    Collective pinning of a frozen vortex liquid in ultrathin superconducting YBa_2Cu_3O_7 films

    Full text link
    The linear dynamic response of the two-dimensional (2D) vortex medium in ultrathin YBa_2Cu_3O_7 films was studied by measuring their ac sheet impedance Z over a broad range of frequencies \omega. With decreasing temperature the dissipative component of Z exhibits, at a temperature T*(\omega) well above the melting temperature of a 2D vortex crystal, a crossover from a thermally activated regime involving single vortices to a regime where the response has features consistent with a description in terms of a collectively pinned vortex manifold. This suggests the idea of a vortex liquid which, below T*(\omega), appears to be frozen at the time scales 1/\omega of the experiments.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
    corecore