1,105 research outputs found

    Nonuniform Self-Organized Dynamical States in Superconductors with Periodic Pinning

    Get PDF
    We consider magnetic flux moving in superconductors with periodic pinning arrays. We show that sample heating by moving vortices produces negative differential resistivity (NDR) of both N and S type (i.e., N- and S-shaped) in the voltage-current characteristic (VI curve). The uniform flux flow state is unstable in the NDR region of the VI curve. Domain structures appear during the NDR part of the VI curve of an N type, while a filamentary instability is observed for the NDR of an S type. The simultaneous existence of the NDR of both types gives rise to the appearance of striking self-organized (both stationary and non-stationary) two-dimensional dynamical structures.Comment: 4 pages, 2 figure

    Natural and projectively equivariant quantizations by means of Cartan Connections

    Full text link
    The existence of a natural and projectively equivariant quantization in the sense of Lecomte [20] was proved recently by M. Bordemann [4], using the framework of Thomas-Whitehead connections. We give a new proof of existence using the notion of Cartan projective connections and we obtain an explicit formula in terms of these connections. Our method yields the existence of a projectively equivariant quantization if and only if an \sl(m+1,\R)-equivariant quantization exists in the flat situation in the sense of [18], thus solving one of the problems left open by M. Bordemann.Comment: 13 page

    Freeze-out configuration properties in the 197Au + 197Au reaction at 23 AMeV

    Full text link
    Data from the experiment on the 197Au + 197Au reaction at 23 AMeV are analyzed with an aim to find signatures of exotic nuclear configurations such as toroid-shaped objects. The experimental data are compared with predictions of the ETNA code dedicated to look for such configurations and with the QMD model. A novel criterion of selecting events possibly resulting from the formation of exotic freeze-out configurations, "the efficiency factor", is tested. Comparison between experimental data and model predictions may indicate for the formation of flat/toroidal nuclear systems

    MICROMEGAS chambers for hadronic calorimetry at a future linear collider

    Full text link
    Prototypes of MICROMEGAS chambers, using bulk technology and analog readout, with 1x1cm2 readout segmentation have been built and tested. Measurements in Ar/iC4H10 (95/5) and Ar/CO2 (80/20) are reported. The dependency of the prototypes gas gain versus pressure, gas temperature and amplification gap thickness variations has been measured with an 55Fe source and a method for temperature and pressure correction of data is presented. A stack of four chambers has been tested in 200GeV/c and 7GeV/c muon and pion beams respectively. Measurements of response uniformity, detection efficiency and hit multiplicity are reported. A bulk MICROMEGAS prototype with embedded digital readout electronics has been assembled and tested. The chamber layout and first results are presented

    Two-dimensional turbulence in magnetised plasmas

    Full text link
    In an inhomogeneous magnetised plasma the transport of energy and particles perpendicular to the magnetic field is in general mainly caused by quasi two-dimensional turbulent fluid mixing. The physics of turbulence and structure formation is of ubiquitous importance to every magnetically confined laboratory plasma for experimental or industrial application. Specifically, high temperature plasmas for fusion energy research are also dominated by the properties of this turbulent transport. Self-organisation of turbulent vortices to mesoscopic structures like zonal flows is related to the formation of transport barriers that can significantly enhance the confinement of a fusion plasma. This subject of great importance in research is rarely touched on in introductory plasma physics or continuum dynamics courses. Here a brief tutorial on 2D fluid and plasma turbulence is presented as an introduction to the field, appropriate for inclusion in undergraduate and graduate courses.Comment: This is an author-created, un-copyedited version of an article published in European Journal of Physics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at doi: 10.1088/0143-0807/29/5/00

    Roaring high and low: composition and possible functions of the Iberian stag's vocal repertoire

    Get PDF
    We provide a detailed description of the rutting vocalisations of free-ranging male Iberian deer (Cervus elaphus hispanicus, Hilzheimer 1909), a geographically isolated and morphologically differentiated subspecies of red deer Cervus elaphus. We combine spectrographic examinations, spectral analyses and automated classifications to identify different call types, and compare the composition of the vocal repertoire with that of other red deer subspecies. Iberian stags give bouts of roars (and more rarely, short series of barks) that are typically composed of two different types of calls. Long Common Roars are mostly given at the beginning or at the end of the bout, and are characterised by a high fundamental frequency (F0) resulting in poorly defined formant frequencies but a relatively high amplitude. In contrast, Short Common Roars are typically given in the middle or at the end of the bout, and are characterised by a lower F0 resulting in relatively well defined vocal tract resonances, but low amplitude. While we did not identify entirely Harsh Roars (as described in the Scottish red deer subspecies (Cervus elaphus scoticus), a small percentage of Long Common Roars contained segments of deterministic chaos. We suggest that the evolution of two clearly distinct types of Common Roars may reflect divergent selection pressures favouring either vocal efficiency in high pitched roars or the communication of body size in low-pitched, high spectral density roars highlighting vocal tract resonances. The clear divergence of the Iberian red deer vocal repertoire from those of other documented European red deer populations reinforces the status of this geographical variant as a distinct subspecies

    Markov Properties of Electrical Discharge Current Fluctuations in Plasma

    Full text link
    Using the Markovian method, we study the stochastic nature of electrical discharge current fluctuations in the Helium plasma. Sinusoidal trends are extracted from the data set by the Fourier-Detrended Fluctuation analysis and consequently cleaned data is retrieved. We determine the Markov time scale of the detrended data set by using likelihood analysis. We also estimate the Kramers-Moyal's coefficients of the discharge current fluctuations and derive the corresponding Fokker-Planck equation. In addition, the obtained Langevin equation enables us to reconstruct discharge time series with similar statistical properties compared with the observed in the experiment. We also provide an exact decomposition of temporal correlation function by using Kramers-Moyal's coefficients. We show that for the stationary time series, the two point temporal correlation function has an exponential decaying behavior with a characteristic correlation time scale. Our results confirm that, there is no definite relation between correlation and Markov time scales. However both of them behave as monotonic increasing function of discharge current intensity. Finally to complete our analysis, the multifractal behavior of reconstructed time series using its Keramers-Moyal's coefficients and original data set are investigated. Extended self similarity analysis demonstrates that fluctuations in our experimental setup deviates from Kolmogorov (K41) theory for fully developed turbulence regime.Comment: 25 pages, 9 figures and 4 tables. V3: Added comments, references, figures and major correction
    corecore