1,631 research outputs found
Biomarkers in emergency medicine
Researchers navigate the ocean of biomarkers searching for proper targets and optimal utilization of them. Emergency medicine builds up the front line to maximize the utility of clinically validated biomarkers and is the cutting edge field to test the applicability of promising biomarkers emerging from thorough translational researches. The role of biomarkers in clinical decision making would be of greater significance for identification, risk stratification, monitoring, and prognostication of the patients in the critical- and acute-care settings. No doubt basic research to explore novel biomarkers in relation to the pathogenesis
is as important as its clinical counterpart. This special issue includes five selected research papers that cover a variety of biomarker- and disease-related topics
Syntactic Markovian Bisimulation for Chemical Reaction Networks
In chemical reaction networks (CRNs) with stochastic semantics based on
continuous-time Markov chains (CTMCs), the typically large populations of
species cause combinatorially large state spaces. This makes the analysis very
difficult in practice and represents the major bottleneck for the applicability
of minimization techniques based, for instance, on lumpability. In this paper
we present syntactic Markovian bisimulation (SMB), a notion of bisimulation
developed in the Larsen-Skou style of probabilistic bisimulation, defined over
the structure of a CRN rather than over its underlying CTMC. SMB identifies a
lumpable partition of the CTMC state space a priori, in the sense that it is an
equivalence relation over species implying that two CTMC states are lumpable
when they are invariant with respect to the total population of species within
the same equivalence class. We develop an efficient partition-refinement
algorithm which computes the largest SMB of a CRN in polynomial time in the
number of species and reactions. We also provide an algorithm for obtaining a
quotient network from an SMB that induces the lumped CTMC directly, thus
avoiding the generation of the state space of the original CRN altogether. In
practice, we show that SMB allows significant reductions in a number of models
from the literature. Finally, we study SMB with respect to the deterministic
semantics of CRNs based on ordinary differential equations (ODEs), where each
equation gives the time-course evolution of the concentration of a species. SMB
implies forward CRN bisimulation, a recently developed behavioral notion of
equivalence for the ODE semantics, in an analogous sense: it yields a smaller
ODE system that keeps track of the sums of the solutions for equivalent
species.Comment: Extended version (with proofs), of the corresponding paper published
at KimFest 2017 (http://kimfest.cs.aau.dk/
Process algebra modelling styles for biomolecular processes
We investigate how biomolecular processes are modelled in process algebras, focussing on chemical reactions. We consider various modelling styles and how design decisions made in the definition of the process algebra have an impact on how a modelling style can be applied. Our goal is to highlight the often implicit choices that modellers make in choosing a formalism, and illustrate, through the use of examples, how this can affect expressability as well as the type and complexity of the analysis that can be performed
Review of the ELI-NP-GBS low level rf and synchronization systems
The Gamma Beam System (GBS) of ELI-NP is a linac based gamma-source in construction at Magurele (RO) by the European consortium EuroGammaS led by INFN. Photons with tunable energy and with intensity and brilliance well beyond the state of the art will be produced by Compton back-scattering between a high quality electron beam (up to 740 MeV) and a 515 nm intense laser pulse. Production of very intense photon flux with narrow bandwidth requires multi-bunch operation at 100 Hz repetition rate. A total of 13 klystrons, 3 S-band (2856 MHz) and 10 C-band (5712 MHz) will power a total of 14 Travelling Wave accelerating sections (2 S-band and 12 C-band) plus 3 S-band Standing Wave cavities (a 1.6 cell RF gun and 2 RF deflectors). Each klystron is individually driven by a temperature stabilized LLRF module, for a maximum flexibility in terms of accelerating gradient, arbitrary pulse shaping (e.g. to compensate beam loading effects in multi-bunch regime) and compensation of long-term thermal drifts. In this paper, the whole LLRF system architecture and bench test results, the RF reference generation and distribution together with an overview of the synchronization system will be described
Concurrent constraint programming with process mobility
We propose an extension of concurrent constraint programming with primitives for process migration within a hierarchical network, and we study its semantics. To this purpose, we first investigate a "pure " paradigm for process migration, namely a paradigm where the only actions are those dealing with transmissions of processes. Our goal is to give a structural definition of the semantics of migration; namely, we want to describe the behaviour of the system, during the transmission of a process, in terms of the behaviour of the components. We achieve this goal by using a labeled transition system where the effects of sending a process, and requesting a process, are modeled by symmetric rules (similar to handshaking-rules for synchronous communication) between the two partner nodes in the network. Next, we extend our paradigm with the primitives of concurrent constraint programming, and we show how to enrich the semantics to cope with the notions of environment and constraint store. Finally, we show how the operational semantics can be used to define an interpreter for the basic calculus.
Graphical Encoding of a Spatial Logic for the pi-Calculus
This paper extends our graph-based approach to the verification of spatial properties of π-calculus specifications. The mechanism is based on an encoding for mobile calculi where each process is mapped into a graph (with interfaces) such that the denotation is fully abstract with respect to the usual structural congruence, i.e., two processes are equivalent exactly when the corresponding encodings yield isomorphic graphs. Behavioral and structural properties of π-calculus processes expressed in a spatial logic can then be verified on the graphical encoding of a process rather than on its textual representation. In this paper we introduce a modal logic for graphs and define a translation of spatial formulae such that a process verifies a spatial formula exactly when its graphical representation verifies the translated modal graph formula
Logics for Unranked Trees: An Overview
Labeled unranked trees are used as a model of XML documents, and logical
languages for them have been studied actively over the past several years. Such
logics have different purposes: some are better suited for extracting data,
some for expressing navigational properties, and some make it easy to relate
complex properties of trees to the existence of tree automata for those
properties. Furthermore, logics differ significantly in their model-checking
properties, their automata models, and their behavior on ordered and unordered
trees. In this paper we present a survey of logics for unranked trees
The Abundance of Interstellar Nitrogen
Using the HST Goddard High Resolution Spectrograph (GHRS), we have obtained
high S/N echelle observations of the weak interstellar N I 1160, 1161 A
absorption doublet toward the stars Gamma Cas, Lambda Ori, Iota Ori, Kappa Ori,
Delta Sco, and Kappa Sco. In combination with a previous GHRS measurement of N
I toward Zeta Oph, these new observations yield a mean interstellar gas phase
nitrogen abundance (per 10 H atoms) of 10 N/H = 75 +/- 4. There are no
statistically significant variations in the measured N abundances from
sightline to sightline and no evidence of density-dependent depletion from the
gas-phase. Since N is not expected to be depleted much into dust grains in
these diffuse sightlines, its gas-phase abundance should reflect the total
interstellar abundance. Consequently, the GHRS observations imply that the
abundance of interstellar nitrogen (gas plus grains) in the local Milky Way is
about 80% of the solar system value of 10 N/H = 93 +/- 16. Although this
interstellar abundance deficit is somewhat less than that recently found for
oxygen and krypton with GHRS, the solar N abundance and the N I oscillator
strengths are too uncertain to definitively rule out either a solar ISM N
abundance or a 2/3 solar ISM N abundance similar to that of O and Kr.Comment: 14 pages, LaTeX, 2 Postscript figures; ApJ Letters, in pres
- …
