151 research outputs found

    Initial soil carbon losses may offset decades of biomass carbon accumulation in Mediterranean afforestation

    Get PDF
    Afforestation of degraded areas was suggested as CO2 sink, contributing to climate change mitigation. Yet, few studies have assessed this sink by combining measurements on carbon (C) in the biomass and the soil, despite it being crucial to properly estimate the mitigation potential. Here, we assessed the combined C stocks of afforestation plots of different ages on former cropland in a Cambisol landscape in Extremadura, Spain. The plots were afforested with two native tree species (Quercus ilex L. and Quercus suber L. in a density ratio of 3:1), planted at several occasions between 1998 and 2011. Stocks of afforested areas in 2022 were compared to non-afforested negative controls on arable land, to a closeby olive grove and a forest with signs of degradation. Tree biomass was estimated from allometric equations, soil organic carbon (SOC) stocks were measured to 30 cm depth, based on equivalent soil mass. The biomass C accumulation rate in afforested plots increased with tree density and elevation (p <0.05; range: 25 to 75 g C m2 yr 1). SOC stocks, in contrast, were not significantly different in afforested and non-afforested plots at any depth and in tendency even lower in afforested plots younger than 20 years. Consequently, total (biomass plus soil) C stocks in afforested plots were not significantly higher than in non-afforested ones. Nevertheless, SOC stocks and contents between the tree rows were significantly lower compared to soil next to the trees in the olive grove (about 1200 vs. 2200 g C m2 in the top 30 cm) and in tendency in the afforested plots (about 1200 vs. 1500 g C m2 in the top 30 cm; p <0.1). The fact that the degraded forest (about 6800 g C m2) and the olive grove (about 5300 g C m2) did have significantly higher total C stocks than the afforested and non-afforested sites (about 2300 and 1800 g C m2) could indicate that afforestation could soon become a C sink. However, our study clearly shows that afforestation is not automatically a C sink. Timing of different C pools` losses and gains affect net ecosystem carbon sequestration. While improved soil management in afforestation may reduce SOC losses, afforestation with Mediterranean Quercus trees under current management practices may require decades before being a C sink. This finding should temper expectations that afforestation with such tree species is a rapid solution to combat climate change

    Diachronic assessment of soil organic C and N dynamics under long-term no-till cropping systems in the tropical upland of Cambodia

    Get PDF
    No-till (NT) cropping systems have been proposed as a strategy to combat soil degradation by storing soil organic carbon (SOC) and total nitrogen (TN). We quantified the impacts of NT cropping systems on the changes in SOC and TN stocks and in particulate and mineral-associated organic matter fractions (POM and MAOM), to 100 cm depth, from three 13-year-old experiments in a tropical red Oxisol in Cambodia using diachronic and equivalent soil mass approaches. Established in 2009 and arranged in a randomized complete-block design with triplicates, the experiments included maize (MaiEx)-, soybean (SoyEx)-, and cassava (CasEx)-based cropping systems. Each experiment comprised three treatments: (1) mono-cropping of main crops (maize, soybean, and cassava) under conventional tillage (CTM); (2) mono-cropping of main crops under NT systems with the use of cover crops (NTM); and (3) bi-annual rotation of main crops under NT systems with the use of cover crops (NTR), with both crops being presented every year and represented by NTR1 and NTR2. Soil samples were collected in 2021, 10 years after the last sampling. All the NT systems significantly (p&lt;0.05) increased SOC stock in the topsoil in SoyEx and MaiEx and down to 40 cm in CasEx. Considering the whole profile (0–100 cm), the SOC accumulation rates ranged from 0.86 to 1.47 and from 0.70 to 1.07 Mg C ha−1 yr−1 in MaiEx and CasEx, respectively. Although SOC stock significantly increased in CTM at 0–20 cm in MaiEx and CasEx, it remained stable at 0–100 cm in all the experiments. At 0–5 cm, NTR systems significantly increased TN stock in all the experiments, while, in NTM systems, it was only significant in MaiEx and SoyEx. At 0–100 cm, TN stock in all the experiments remained stable under NTR systems, whereas a significant decrease was observed under NTM systems in SoyEx and CasEx. Although C-POM stock significantly increased under all NT systems limited to 0–10 cm in MaiEx and SoyEx, all the NT systems significantly increased C-MAOM stock in the 0–10 cm layer in MaiEx and SoyEx and down to 40 cm in CasEx. All the NT systems significantly increased N-POM stock at 0–10 cm in MaiEx and SoyEx, while a significant decreased in N-MAOM stock was observed below 5 cm in CasEx and below 40 cm in MaiEx and SoyEx. Our findings showed that long-term NT systems with crop species diversification accumulated SOC not only on the surface but also in the whole profile by increasing SOC in both the POM and MAOM, even in the cassava-based system. This study highlights the potential of NT systems for storing SOC over time but raises questions about soil N dynamics.</p

    The input reduction principle of agroecology is wrong when it comes to mineral fertilizer use in sub-Saharan Africa

    Get PDF
    Can farmers in sub-Saharan Africa (SSA) boost crop yields and improve food availability without using more mineral fertilizer? This question has been at the center of lively debates among the civil society, policy-makers, and in academic editorials. Proponents of the “yes” answer have put forward the “input reduction” principle of agroecology, i.e. by relying on agrobiodiversity, recycling and better efficiency, agroecological practices such as the use of legumes and manure can increase crop productivity without the need for more mineral fertilizer. We reviewed decades of scientific literature on nutrient balances in SSA, biological nitrogen fixation of tropical legumes, manure production and use in smallholder farming systems, and the environmental impact of mineral fertilizer. Our analyses show that more mineral fertilizer is needed in SSA for five reasons: (i) the starting point in SSA is that agricultural production is “agroecological” by default, that is, very low mineral fertilizer use, widespread mixed crop-livestock systems and large crop diversity including legumes, but leading to poor soil fertility as a result of widespread soil nutrient mining, (ii) the nitrogen needs of crops cannot be adequately met solely through biological nitrogen fixation by legumes and recycling of animal manure, (iii) other nutrients like phosphorus and potassium need to be replaced continuously, (iv) mineral fertilizers, if used appropriately, cause little harm to the environment, and (v) reducing the use of mineral fertilizers would hamper productivity gains and contribute indirectly to agricultural expansion and to deforestation. Yet, the agroecological principles directly related to soil fertility—recycling, efficiency, diversity—remain key in improving soil health and nutrient-use efficiency, and are critical to sustaining crop productivity in the long run. We argue for a nuanced position that acknowledges the critical need for more mineral fertilizers in SSA, in combination with the use of agroecological practices and adequate policy support

    The science base of a strategic research agenda: executive summary.

    Get PDF
    Identifying the challenges around soil organic carbon sequestration in agriculture. Questionnaire. Twelve Testable Hypotheses for Soil Organic Carbon Sequestration in Agriculture. Key research and innovation advances.European Union's Horizon 2020 Research and Innovation Programme Grant Agreement No 774378. Coordination of International Research Cooperation on Soil Carbon Sequestration in Agriculture

    Alley coppice—a new system with ancient roots

    Get PDF

    Analyse de matrices environnementales complexes par GC x GC

    No full text
    International audienc

    Analysis of complex environmental matrices in GCxGC

    No full text
    International audienc
    corecore