18 research outputs found

    Onset of thermal convection in a horizontal layer of granular gas

    Full text link
    The Navier-Stokes granular hydrodynamics is employed for determining the threshold of thermal convection in an infinite horizontal layer of granular gas. The dependence of the convection threshold, in terms of the inelasticity of particle collisions, on the Froude and Knudsen numbers is found. A simple necessary condition for convection is formulated in terms of the Schwarzschild's criterion, well-known in thermal convection of (compressible) classical fluids. The morphology of convection cells at the onset is determined. At large Froude numbers, the Froude number drops out of the problem. As the Froude number goes to zero, the convection instability turns into a recently discovered phase separation instability.Comment: 6 pages, 6 figures. An extended version. A simple and universal necessary criterion for convection presente

    Hydrodynamics of thermal granular convection

    Full text link
    A hydrodynamic theory is formulated for buoyancy-driven ("thermal") granular convection, recently predicted in molecular dynamic simulations and observed in experiment. The limit of a dilute flow is considered. The problem is fully described by three scaled parameters. The convection occurs via a supercritical bifurcation, the inelasticity of the collisions being the control parameter. The theory is expected to be valid for small Knudsen numbers and nearly elastic grain collisions.Comment: 4 pages, 4 EPS figures, some details adde

    The inhibition of the Rayleigh-Taylor instability by rotation

    Get PDF
    It is well-established that the Coriolis force that acts on fluid in a rotating system can act to stabilise otherwise unstable flows. Chandrasekhar considered theoretically the effect of the Coriolis force on the Rayleigh-Taylor instability, which occurs at the interface between a dense fluid lying on top of a lighter fluid under gravity, concluding that rotation alone could not stabilise this system indefinitely. Recent numerical work suggests that rotation may, nevertheless, slow the growth of the instability. Experimental verification of these results using standard techniques is problematic, owing to the practical difficulty in establishing the initial conditions. Here, we present a new experimental technique for studying the Rayleigh-Taylor instability under rotation that side-steps the problems encountered with standard techniques by using a strong magnetic field to destabilize an otherwise stable system. We find that rotation about an axis normal to the interface acts to retard the growth rate of the instability and stabilise long wavelength modes; the scale of the observed structures decreases with increasing rotation rate, asymptoting to a minimum wavelength controlled by viscosity. We present a critical rotation rate, dependent on Atwood number and the aspect ratio of the system, for stabilising the most unstable mode

    A brief review on the onset of free convection near the liquid-vapour critical point

    No full text
    In this short article, a review is made on the problem of the onset of free convection near the liquid-vapour critical point. After a brief summary of the properties and the thermo-mechanical behaviour of near-critical fluids, the mechanism of Piston-Effect is presented (which is a 4th mode of heat transfer near the critical point). The influence of this phenomenon on the onset of free convection is analysed. The results of a recent linear stability analysis are then detailed, enabling to find the convection threshold near the critical point for a bottom-heated fluid initially in a steady regime of pure conduction. The extension of this last study to the case of an unsteady heating is finally discussed

    Highly transparent bismuth borotellurite glass-ceramics: Comprehension of crystallization mechanisms

    No full text
    International audienceUnderstanding the mechanism at play during the partial crystallization of a parent glass remains crucial for controlling the optical properties of the final glass-ceramics. In this work, we study the crystallization of bismuth borotellurite glasses, where a specific investigation on the 60TeO2–20B2O3–20Bi2O3 composition is reported. Under adapted heat treatment conditions, highly transparent glass-ceramics can be obtained: the crystallization of the unique anti-glass Bi2Te4O11 phase is evidenced by X-ray diffraction and Raman spectroscopy data confirm its disordered nature. While the quenched glass appears homogeneous, the observation of the early stages glass-ceramic samples by transmission electron microscopy reveals the formation of isolated polycrystalline Bi2Te4O11 entities scattered in a predominant glassy matrix. However, longer heat-treatment of samples induce some chemical demixtion of the residual glass matrix, where two separate amorphous regions of a different composition coexist. The resulting material is finally constituted of the aforementioned Bi2Te4O11 polycrystalline clusters dispersed within a majority of regions with a Te/Bi ratio larger than the nominal 1.5 ratio, separated by tiny “venules” strongly impoverished in tellurium and also likely containing boron element. Photoluminescence properties of Eu3+-doped samples indicate that tiny spectral and temporal modifications happen with the crystallization, reflecting the persistent disordered surrounding of the rare-earth ions. © 202
    corecore