1,691 research outputs found
Characterization of anisotropic nano-particles by using depolarized dynamic light scattering in the near field
Light scattering techniques are widely used in many fields of condensed and
sof t matter physics. Usually these methods are based on the study of the
scattered light in the far field. Recently, a new family of near field
detection schemes has been developed, mainly for the study of small angle light
scattering. These techniques are based on the detection of the light intensity
near to the sample, where light scattered at different directions overlaps but
can be distinguished by Fourier transform analysis. Here we report for the
first time data obtained with a dynamic near field scattering instrument,
measuring both polarized and depolarized scattered light. Advantages of this
procedure over the traditional far field detection include the immunity to
stray light problems and the possibility to obtain a large number of
statistical samples for many different wave vectors in a single instantaneous
measurement. By using the proposed technique we have measured the translational
and rotational diffusion coefficients of rod-like colloidal particles. The
obtained data are in very good agreement with the data acquired with a
traditional light scattering apparatus.Comment: Published in Optics Express. This version has changes in bibliograph
First array of enriched ZnSe bolometers to search for double beta decay
The R&D activity performed during the last years proved the potential of ZnSe
scintillating bolometers to the search for neutrino-less double beta decay,
motivating the realization of the first large-mass experiment based on this
technology: CUPID-0. The isotopic enrichment in Se, the ZnSe
crystals growth, as well as the light detectors production have been
accomplished, and the experiment is now in construction at Laboratori Nazionali
del Gran Sasso (Italy). In this paper we present the results obtained testing
the first three ZnSe crystals operated as scintillating bolometers, and
we prove that their performance in terms of energy resolution, background
rejection capability and intrinsic radio-purity complies with the requirements
of CUPID-0
Analysis Techniques for the Evaluation of the Neutrinoless Double-Beta Decay Lifetime in Te with CUORE-0
We describe in detail the methods used to obtain the lower bound on the
lifetime of neutrinoless double-beta () decay in Te and
the associated limit on the effective Majorana mass of the neutrino using the
CUORE-0 detector. CUORE-0 is a bolometric detector array located at the
Laboratori Nazionali del Gran Sasso that was designed to validate the
background reduction techniques developed for CUORE, a next-generation
experiment scheduled to come online in 2016. CUORE-0 is also a competitive
decay search in its own right and functions as a platform to
further develop the analysis tools and procedures to be used in CUORE. These
include data collection, event selection and processing, as well as an
evaluation of signal efficiency. In particular, we describe the amplitude
evaluation, thermal gain stabilization, energy calibration methods, and the
analysis event selection used to create our final decay search
spectrum. We define our high level analysis procedures, with emphasis on the
new insights gained and challenges encountered. We outline in detail our
fitting methods near the hypothesized decay peak and catalog
the main sources of systematic uncertainty. Finally, we derive the
decay half-life limits previously reported for CUORE-0,
yr, and in combination with the Cuoricino
limit, yr.Comment: 18 pages, 18 figures. (Version 3 reflects only minor changes to the
text. Few additional details, no major content changes.
Search for the rare decays and
A search for the rare decay of a or meson into the final
state is performed, using data collected by the LHCb experiment
in collisions at and TeV, corresponding to an integrated
luminosity of 3 fb. The observed number of signal candidates is
consistent with a background-only hypothesis. Branching fraction values larger
than for the decay mode are
excluded at 90% confidence level. For the decay
mode, branching fraction values larger than are excluded at
90% confidence level, this is the first branching fraction limit for this
decay.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-044.htm
A study of violation in () with the modes , and
An analysis of the decays of and is presented in which the meson is reconstructed in
the three-body final states , and . Using data from LHCb corresponding to an integrated luminosity of
3.0 fb of collisions, measurements of several observables are
performed. First observations are obtained of the suppressed ADS decay and the quasi-GLW decay . The results are interpreted in the
context of the unitarity triangle angle and related parameters
Differential branching fraction and angular analysis of decays
The differential branching fraction of the rare decay is measured as a function of , the
square of the dimuon invariant mass. The analysis is performed using
proton-proton collision data, corresponding to an integrated luminosity of 3.0
\mbox{ fb}^{-1}, collected by the LHCb experiment. Evidence of signal is
observed in the region below the square of the mass. Integrating
over 15 < q^{2} < 20 \mbox{ GeV}^2/c^4 the branching fraction is measured as
d\mathcal{B}(\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^-)/dq^2 = (1.18 ^{+
0.09} _{-0.08} \pm 0.03 \pm 0.27) \times 10^{-7} ( \mbox{GeV}^{2}/c^{4})^{-1},
where the uncertainties are statistical, systematic and due to the
normalisation mode, , respectively.
In the intervals where the signal is observed, angular distributions are
studied and the forward-backward asymmetries in the dimuon ()
and hadron () systems are measured for the first time. In the
range 15 < q^2 < 20 \mbox{ GeV}^2/c^4 they are found to be A^{l}_{\rm FB} =
-0.05 \pm 0.09 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)} and A^{h}_{\rm FB} =
-0.29 \pm 0.07 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)}.Comment: 27 pages, 10 figures, Erratum adde
- …
